Enhancing coulombic efficiency and rate capability of high capacity lithium excess layered oxide cathode material by electrocatalysis of nanogold

RSC Advances ◽  
2016 ◽  
Vol 6 (24) ◽  
pp. 20374-20380 ◽  
Author(s):  
Quanxin Ma ◽  
Deying Mu ◽  
Yuanlong Liu ◽  
Shibo Yin ◽  
Changsong Dai

A lithium-rich cathode material Li1.2Mn0.56Ni0.16Co0.08O2 modified with nanogold (Au@LMNCO) for lithium-ion (Li-ion) batteries was prepared using co-precipitation, solid-state reaction and surface treatment techniques.

RSC Advances ◽  
2015 ◽  
Vol 5 (7) ◽  
pp. 4872-4879 ◽  
Author(s):  
Mansoo Choi ◽  
Kisuk Kang ◽  
Hyun-Soo Kim ◽  
Young Moo Lee ◽  
Bong-Soo Jin

We report high capacity and rate capability of titanium-added Li3V2(PO4)3 (LVP) as a cathode material for lithium ion batteries (LIBs).


RSC Advances ◽  
2015 ◽  
Vol 5 (2) ◽  
pp. 1612-1618 ◽  
Author(s):  
Min Wang ◽  
Meng Yang ◽  
Liqun Ma ◽  
Xiaodong Shen

Ti-doped Li2Mn1−xTixSO4samples exhibit superior rate capability. Even at a higher rate (2 C) the samples keep a discharge capacity of around 700 mA h g−1, whereas the undoped sample only delivers a discharge capacity of ca. 5 mA h g−1.


2020 ◽  
Vol 8 (4) ◽  
pp. 1939-1946 ◽  
Author(s):  
Sae Hoon Lim ◽  
Gi Dae Park ◽  
Dae Soo Jung ◽  
Jong-Heun Lee ◽  
Yun Chan Kang

Nickel hydroxy chloride was studied as an efficient material for lithium ion batteries. Ni(OH)Cl showed high capacity, good cycle stability, and great rate capability through the formation of Ni(OH)2/NiCl2 nanocomposite heterointerfaces.


2017 ◽  
Vol 5 (19) ◽  
pp. 9365-9376 ◽  
Author(s):  
Fu-Da Yu ◽  
Lan-Fang Que ◽  
Zhen-Bo Wang ◽  
Yuan Xue ◽  
Yin Zhang ◽  
...  

Novel hierarchical ball-in-ball hollow Li-rich microspheres with a multi-elemental composition are reported as a high performance cathode material for Li-ion batteries with excellent rate capability and superior cycle stability.


RSC Advances ◽  
2015 ◽  
Vol 5 (103) ◽  
pp. 84673-84679 ◽  
Author(s):  
Huaqi Yin ◽  
Shaomin Ji ◽  
Mingzhe Gu ◽  
Liguo Zhang ◽  
Jun Liu

The Li-rich cathode material Li1.2Mn0.54Ni0.13Co0.13O2was uniformly coated with the stable active material LiMn1.5Ni0.5O4viaa simple and scalable co-precipitation method.


2014 ◽  
Vol 2 (19) ◽  
pp. 6870-6878 ◽  
Author(s):  
Jinlong Yang ◽  
Xiaochun Kang ◽  
Lin Hu ◽  
Xue Gong ◽  
Shichun Mu

The nanocrystalline-Li2FeSiO4 with carbon frameworks, possessing high-capacity and high-rate performance, is a promising next-generation cathode material for high-power lithium-ion batteries.


2013 ◽  
Vol 25 (27) ◽  
pp. 3722-3726 ◽  
Author(s):  
Feng Wu ◽  
Ning Li ◽  
Yuefeng Su ◽  
Haofang Shou ◽  
Liying Bao ◽  
...  

2011 ◽  
Vol 04 (03) ◽  
pp. 299-303 ◽  
Author(s):  
ZHUO TAN ◽  
PING GAO ◽  
FUQUAN CHENG ◽  
HONGJUN LUO ◽  
JITAO CHEN ◽  
...  

A multicomponent olivine cathode material, LiMn0.4Fe0.6PO4 , was synthesized via a novel coprecipitation method of the mixed transition metal oxalate. X-ray diffraction patterns indicate that carbon-coated LiMn0.4Fe0.6PO4 has been prepared successfully and that LiMn0.4Fe0.6PO4/C is crystallized in an orthorhombic structure without noticeable impurity. Homogeneous distribution of Mn and Fe in LiMn0.4Fe0.6PO4/C can be observed from the scanning electron microscopy (SEM) and the corresponding energy dispersive X-ray spectrometry (EDS) analysis. Hence, the electrochemical activity of each transition metal in the olivine synthesized via coprecipitation method was enhanced remarkably, as indicated by the galvanostatic charge/discharge measurement. The synthesized LiMn0.4Fe0.6PO4/C exhibits a high capacity of 158.6 ± 3 mAhg-1 at 0.1 C, delivering an excellent rate capability of 122.6 ± 3 mAhg-1 at 10 C and 114.9 ± 3 mAhg-1 at 20 C.


RSC Advances ◽  
2015 ◽  
Vol 5 (94) ◽  
pp. 77324-77331 ◽  
Author(s):  
Qingliang Xie ◽  
Chenhao Zhao ◽  
Zhibiao Hu ◽  
Qi Huang ◽  
Cheng Chen ◽  
...  

Layered Li[Li0.2Mn0.56Ni0.16Co0.08]O2 porous microspheres have been successfully synthesized by a urea combustion method, and then coated with appropriate amount of LaPO4via a facile chemical precipitation route.


Sign in / Sign up

Export Citation Format

Share Document