scholarly journals Water diffusion in atmospherically relevant α-pinene secondary organic material

2015 ◽  
Vol 6 (8) ◽  
pp. 4876-4883 ◽  
Author(s):  
Hannah C. Price ◽  
Johan Mattsson ◽  
Yue Zhang ◽  
Allan K. Bertram ◽  
James F. Davies ◽  
...  

We report the first direct measurements of water diffusion coefficients in secondary organic aerosol.

2016 ◽  
Vol 18 (13) ◽  
pp. 8785-8793 ◽  
Author(s):  
Mallory L. Hinks ◽  
Monica V. Brady ◽  
Hanna Lignell ◽  
Mijung Song ◽  
James W. Grayson ◽  
...  

This work explores the effect of environmental conditions on the photodegradation rates of atmospherically relevant, photolabile, organic molecules embedded in a film of viscous secondary organic material (SOM).


2019 ◽  
Author(s):  
Mijung Song ◽  
Adrian M. Maclean ◽  
Yuanzhou Huang ◽  
Natalie R. Smith ◽  
Sandra L. Blair ◽  
...  

Abstract. Information on liquid-liquid phase separation (LLPS) and viscosity (or diffusion) within secondary organic aerosol (SOA) is needed to improve predictions of particle size, mass, reactivity, and cloud nucleating properties in the atmosphere. Here we report on LLPS and viscosities within SOA generated by the photooxidation of diesel fuel vapors. Diesel fuel contains a wide range of volatile organic compounds, and SOA generated by the photooxidation of diesel fuel vapors may be a good proxy for SOA from anthropogenic emissions. In our experiments, LLPS occurred over the relative humidity (RH) range of ~ 70 % to ~ 100 %, resulting in an organic-rich outer phase and a water-rich inner phase. These results may have implications for predicting the cloud nucleating properties of anthropogenic SOA since the organic-rich outer phase can lower the kinetic barrier for activation to a cloud droplet. At ≤ 10 % RH, the viscosity was in the range of ≥ 1 × 108 Pa s, which corresponds to roughly the viscosity of tar pitch. At 38–50 % RH the viscosity was in the range of 1 × 108–3 × 105 Pa s. These measured viscosities are consistent with predictions based on oxygen to carbon elemental ratio (O : C) and molar mass as well as predictions based on the number of carbon, hydrogen, and oxygen atoms. Based on the measured viscosities and the Stokes–Einstein relation, at ≤ 10 % RH diffusion coefficients of organics within diesel fuel SOA is ≤ 5.4 × 10−17cm2 s−1 and the mixing time of organics within 200 nm diesel fuel SOA particles (τmixing) is ≳ 50 h. These small diffusion coefficients and large mixing times may be important in laboratory experiments, where SOA is often generated and studied using low RH conditions and on time scales of minutes to hours. At 38–50 % RH, the calculated organic diffusion coefficients are in the range of 5.4 × 10−17 to 1.8 × 10−13 cm2 s−1 and calculated τmixing values are in the range of ~ 0.01 h to ~ 50 h. These values provide important constraints for the physicochemical properties of anthropogenic SOA.


2019 ◽  
Vol 19 (19) ◽  
pp. 12515-12529 ◽  
Author(s):  
Mijung Song ◽  
Adrian M. Maclean ◽  
Yuanzhou Huang ◽  
Natalie R. Smith ◽  
Sandra L. Blair ◽  
...  

Abstract. Information on liquid–liquid phase separation (LLPS) and viscosity (or diffusion) within secondary organic aerosol (SOA) is needed to improve predictions of particle size, mass, reactivity, and cloud nucleating properties in the atmosphere. Here we report on LLPS and viscosities within SOA generated by the photooxidation of diesel fuel vapors. Diesel fuel contains a wide range of volatile organic compounds, and SOA generated by the photooxidation of diesel fuel vapors may be a good proxy for SOA from anthropogenic emissions. In our experiments, LLPS occurred over the relative humidity (RH) range of ∼70 % to ∼100 %, resulting in an organic-rich outer phase and a water-rich inner phase. These results may have implications for predicting the cloud nucleating properties of anthropogenic SOA since the presence of an organic-rich outer phase at high-RH values can lower the supersaturation with respect to water required for cloud droplet formation. At ≤10 % RH, the viscosity was ≥1×108 Pa s, which corresponds to roughly the viscosity of tar pitch. At 38 %–50 % RH, the viscosity was in the range of 1×108 to 3×105 Pa s. These measured viscosities are consistent with predictions based on oxygen to carbon elemental ratio (O:C) and molar mass as well as predictions based on the number of carbon, hydrogen, and oxygen atoms. Based on the measured viscosities and the Stokes–Einstein relation, at ≤10 % RH diffusion coefficients of organics within diesel fuel SOA is ≤5.4×10-17 cm2 s−1 and the mixing time of organics within 200 nm diesel fuel SOA particles (τmixing) is 50 h. These small diffusion coefficients and large mixing times may be important in laboratory experiments, where SOA is often generated and studied using low-RH conditions and on timescales of minutes to hours. At 38 %–50 % RH, the calculated organic diffusion coefficients are in the range of 5.4×10-17 to 1.8×10-13 cm2 s−1 and calculated τmixing values are in the range of ∼0.01 h to ∼50 h. These values provide important constraints for the physicochemical properties of anthropogenic SOA.


2018 ◽  
Vol 20 (1) ◽  
pp. 245-252 ◽  
Author(s):  
Chen Wang ◽  
Frank Wania ◽  
Kai-Uwe Goss

The concept of differential SOA yield and a consideration of kinetic processes are important when modelling SOA formation under atmospherically relevant conditions.


2019 ◽  
Vol 19 (3) ◽  
pp. 1491-1503 ◽  
Author(s):  
Dagny A. Ullmann ◽  
Mallory L. Hinks ◽  
Adrian M. Maclean ◽  
Christopher L. Butenhoff ◽  
James W. Grayson ◽  
...  

Abstract. Viscosities and diffusion rates of organics within secondary organic aerosol (SOA) remain uncertain. Using the bead-mobility technique, we measured viscosities as a function of water activity (aw) of SOA generated by the ozonolysis of limonene followed by browning by exposure to NH3 (referred to as brown limonene SOA or brown LSOA). These measurements together with viscosity measurements reported in the literature show that the viscosity of brown LSOA increases by 3–5 orders of magnitude as the aw decreases from 0.9 to approximately 0.05. In addition, we measured diffusion coefficients of intrinsic fluorescent organic molecules within brown LSOA matrices using rectangular area fluorescence recovery after photobleaching. Based on the diffusion measurements, as the aw decreases from 0.9 to 0.33, the average diffusion coefficient of the intrinsic fluorescent organic molecules decreases from 5.5×10-9 to 7.1×10-13 cm2 s−1 and the mixing times of intrinsic fluorescent organic molecules within 200 nm brown LSOA particles increases from 0.002 to 14 s. These results suggest that the mixing times of large organics in the brown LSOA studied here are short (<1 h) for aw and temperatures often found in the planetary boundary layer (PBL). Since the diffusion coefficients and mixing times reported here correspond to SOA generated using a high mass loading (∼1000 µg m−3), biogenic SOA particles found in the atmosphere with mass loadings ≤10 µg m−3 are likely to have higher viscosities and longer mixing times (possibly 3 orders of magnitude longer). These new measurements of viscosity and diffusion were used to test the accuracy of the Stokes–Einstein relation for predicting diffusion rates of organics within brown LSOA matrices. The results show that the Stokes–Einstein equation gives accurate predictions of diffusion coefficients of large organics within brown LSOA matrices when the viscosity of the matrix is as high as 102 to 104 Pa s. These results have important implications for predicting diffusion and mixing within SOA particles in the atmosphere.


2007 ◽  
Vol 7 (21) ◽  
pp. 5599-5610 ◽  
Author(s):  
M. Camredon ◽  
B. Aumont ◽  
J. Lee-Taylor ◽  
S. Madronich

Abstract. Our current understanding of secondary organic aerosol (SOA) formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i) the potential for products of multiple oxidation steps contributing to SOA, and (ii) the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of detailed gas-phase oxidation schemes with a thermodynamic condensation module. Such a model allows prediction of SOA mass and speciation on the basis of first principles. The SOA/VOC/NOx system is studied for the oxidation of 1-octene under atmospherically relevant concentrations. In this study, gaseous oxidation of octene is simulated to lead to SOA formation. Contributors to SOA formation are shown to be formed via multiple oxidation steps of the parent hydrocarbon. The behaviour of the SOA/VOC/NOx system simulated using the explicit model agrees with general tendencies observed during laboratory chamber experiments. This explicit modelling of SOA formation appears as a useful exploratory tool to (i) support interpretations of SOA formation observed in laboratory chamber experiments, (ii) give some insights on SOA formation under atmospherically relevant conditions and (iii) investigate implications for the regional/global lifetimes of the SOA.


2018 ◽  
Author(s):  
Dagny A. Ullmann ◽  
Mallory L. Hinks ◽  
Adrian Maclean ◽  
Christopher Butenhoff ◽  
James Grayson ◽  
...  

Abstract. Viscosities and diffusion rates of organics within secondary organic aerosol (SOA) remain uncertain. Using the bead-mobility technique, we measured the viscosities as a function of water activity (aw) of SOA generated by the ozonolysis of limonene followed by browning by exposure to NH3 (referred to as brown limonene SOA or brown LSOA). These measurements together with viscosity measurements reported in the literature show that the viscosity of brown LSOA increases by 3–5 orders of magnitude as the aw decreases from 0.9 to approximately 0.05. In addition, we measured diffusion coefficients of intrinsic fluorescent organic molecules within brown LSOA matrices using rectangular area fluorescence recovery after photobleaching. Based on the diffusion measurements, as the aw decreases from 0.9 to 0.33, the average diffusion coefficient of the intrinsic fluorescent organic molecules decreases from 5.5∙10-9 cm2 s-1 to 7.1∙10-13 cm2 s-1 and the mixing times of intrinsic fluorescent organic molecules within 200 nm brown LSOA particles increases from 0.002 s to 14 s. These results suggest that the mixing times of large organics in the brown LSOA studied here are short (


2011 ◽  
Vol 11 (6) ◽  
pp. 16933-16966 ◽  
Author(s):  
C. J. Ebben ◽  
I. S. Martinez ◽  
M. Shrestha ◽  
A. M. Buchbinder ◽  
A. L. Corrigan ◽  
...  

Abstract. We present the vibrational sum frequency generation spectra of organic particles collected in a boreal forest in Finland and a tropical forest in Brazil. These spectra are compared to those of secondary organic material produced in the Harvard Environmental Chamber. By comparing coherent vibrational spectra of a variety of terpene and olefin reference compounds, along with the secondary organic material synthesized in the environmental chamber, we show that submicron aerosol particles sampled in Southern Finland during HUMPPA-COPEC-2010 are composed to a large degree of material similar in chemical composition to synthetic α-pinene-derived material. For material collected in Brazil as part of AMAZE-08, the organic component is found to be chemically complex in the coarse mode but highly uniform in the fine mode. When combined with histogram analyses of the isoprene and monoterpene abundance recorded during the HUMPPA-COPEC-2010 and AMAZE-08 campaigns, the findings presented here indicate that if air is rich in monoterpenes, submicron-sized secondary aerosol particles that form under normal OH and O3 concentration levels can be described in terms of their hydrocarbon content as being similar to α-pinene-derived model secondary organic aerosol particles. If the isoprene concentration dominates the chemical composition of organic compounds in forest air, then the hydrocarbon component of secondary organic material in the submicron size range is not simply well-represented by that of isoprene-derived model secondary organic aerosol particles but is more complex. Throughout the climate-relevant size range of the fine mode, however, we find that the chemical composition of the secondary organic particle material from such air is invariant with size, suggesting that the particle growth does not change the chemical composition of the hydrocarbon component of the particles in a significant way.


Sign in / Sign up

Export Citation Format

Share Document