scholarly journals Contrasting organic aerosol particles from boreal and tropical forests during HUMPPA-COPEC-2010 and AMAZE-08 using coherent vibrational spectroscopy

2011 ◽  
Vol 11 (6) ◽  
pp. 16933-16966 ◽  
Author(s):  
C. J. Ebben ◽  
I. S. Martinez ◽  
M. Shrestha ◽  
A. M. Buchbinder ◽  
A. L. Corrigan ◽  
...  

Abstract. We present the vibrational sum frequency generation spectra of organic particles collected in a boreal forest in Finland and a tropical forest in Brazil. These spectra are compared to those of secondary organic material produced in the Harvard Environmental Chamber. By comparing coherent vibrational spectra of a variety of terpene and olefin reference compounds, along with the secondary organic material synthesized in the environmental chamber, we show that submicron aerosol particles sampled in Southern Finland during HUMPPA-COPEC-2010 are composed to a large degree of material similar in chemical composition to synthetic α-pinene-derived material. For material collected in Brazil as part of AMAZE-08, the organic component is found to be chemically complex in the coarse mode but highly uniform in the fine mode. When combined with histogram analyses of the isoprene and monoterpene abundance recorded during the HUMPPA-COPEC-2010 and AMAZE-08 campaigns, the findings presented here indicate that if air is rich in monoterpenes, submicron-sized secondary aerosol particles that form under normal OH and O3 concentration levels can be described in terms of their hydrocarbon content as being similar to α-pinene-derived model secondary organic aerosol particles. If the isoprene concentration dominates the chemical composition of organic compounds in forest air, then the hydrocarbon component of secondary organic material in the submicron size range is not simply well-represented by that of isoprene-derived model secondary organic aerosol particles but is more complex. Throughout the climate-relevant size range of the fine mode, however, we find that the chemical composition of the secondary organic particle material from such air is invariant with size, suggesting that the particle growth does not change the chemical composition of the hydrocarbon component of the particles in a significant way.

2011 ◽  
Vol 11 (20) ◽  
pp. 10317-10329 ◽  
Author(s):  
C. J. Ebben ◽  
I. S. Martinez ◽  
M. Shrestha ◽  
A. M. Buchbinder ◽  
A. L. Corrigan ◽  
...  

Abstract. We present the vibrational sum frequency generation spectra of organic particles collected in a boreal forest in Finland and a tropical forest in Brazil. These spectra are compared to those of secondary organic material produced in the Harvard Environmental Chamber. By comparing coherent vibrational spectra of a variety of terpene and olefin reference compounds, along with the secondary organic material synthesized in the environmental chamber, we show that submicron aerosol particles sampled in Southern Finland during HUMPPA-COPEC-2010 are composed to a large degree of material similar in chemical composition to synthetic α-pinene-derived material. For material collected in Brazil as part of AMAZE-08, the organic component is found to be chemically complex in the coarse mode but highly uniform in the fine mode. When combined with histogram analyses of the isoprene and monoterpene abundance recorded during the HUMPPA-COPEC-2010 and AMAZE-08 campaigns, the findings presented here indicate that if air is rich in monoterpenes, submicron-sized secondary aerosol particles that form under normal OH and O3 concentration levels can be described in terms of their hydrocarbon content as being similar to α-pinene-derived model secondary organic aerosol particles. If the isoprene concentration dominates the chemical composition of organic compounds in forest air, then the hydrocarbon component of secondary organic material in the submicron size range is not simply well-represented by that of isoprene-derived model secondary organic aerosol particles but is more complex. Throughout the climate-relevant size range of the fine mode, however, we find that the chemical composition of the secondary organic particle material from such air is invariant with size, suggesting that the particle growth does not change the chemical composition of the hydrocarbon component of the particles in a significant way.


2011 ◽  
Vol 11 (3) ◽  
pp. 9313-9334
Author(s):  
A. Virtanen ◽  
J. Kannosto ◽  
J. Joutsensaari ◽  
E. Saukko ◽  
H. Kuuluvainen ◽  
...  

Abstract. The assessment of the climatic impacts and adverse health effects of atmospheric aerosol particles requires detailed information on particle properties. However, very limited information is available on the morphology and phase state of secondary organic aerosol (SOA) particles. The physical state of particles greatly affects particulate-phase chemical reactions, and thus the growth rates of newly formed atmospheric aerosol particles. Thus verifying the physical phase state of SOA particles gives new and important insight into their formation, subsequent growth, and consequently potential atmospheric impacts. According to our recent study, biogenic SOA particles produced in laboratory chambers from the oxidation of real plant emissions as well as in ambient boreal forest atmospheres can exist in a solid phase in size range >30 nm. In this paper, we extend previously published results to diameters in the range of 17–30 nm. The physical phase of the particles is studied by investigating particle bounce properties utilizing electrical low pressure impactor (ELPI). We also investigate the effect of estimates of particle density on the interpretation of our bounce observations. According to the results presented in this paper, particle bounce clearly decreases with decreasing particle size in sub 30 nm size range. The decreasing bounce can be caused by the differences in composition and phase of large (diameters greater than 30 nm) and smaller (diameters between 17 and 30 nm) particles.


2011 ◽  
Vol 11 (16) ◽  
pp. 8759-8766 ◽  
Author(s):  
A. Virtanen ◽  
J. Kannosto ◽  
H. Kuuluvainen ◽  
A. Arffman ◽  
J. Joutsensaari ◽  
...  

Abstract. The assessment of the climatic impacts and adverse health effects of atmospheric aerosol particles requires detailed information on particle properties. However, very limited information is available on the morphology and phase state of secondary organic aerosol (SOA) particles. The physical state of particles greatly affects particulate-phase chemical reactions, and thus the growth rates of newly formed atmospheric aerosol. Thus verifying the physical phase state of SOA particles gives new and important insight into their formation, subsequent growth, and consequently potential atmospheric impacts. According to our recent study, biogenic SOA particles produced in laboratory chambers from the oxidation of real plant emissions as well as in ambient boreal forest atmospheres can exist in a solid phase in size range >30 nm. In this paper, we extend previously published results to diameters in the range of 17–30 nm. The physical phase of the particles is studied by investigating particle bounce properties utilizing electrical low pressure impactor (ELPI). We also investigate the effect of estimates of particle density on the interpretation of our bounce observations. According to the results presented in this paper, particle bounce clearly decreases with decreasing particle size in sub 30 nm size range. The comparison measurements by ammonium sulphate and investigation of the particle impaction velocities strongly suggest that the decreasing bounce is caused by the differences in composition and phase of large (diameters greater than 30 nm) and smaller (diameters between 17 and 30 nm) particles.


2006 ◽  
Vol 110 (31) ◽  
pp. 9665-9690 ◽  
Author(s):  
Jason D. Surratt ◽  
Shane M. Murphy ◽  
Jesse H. Kroll ◽  
Nga L. Ng ◽  
Lea Hildebrandt ◽  
...  

2013 ◽  
Vol 15 (8) ◽  
pp. 2983 ◽  
Author(s):  
Evan Abramson ◽  
Dan Imre ◽  
Josef Beránek ◽  
Jacqueline Wilson ◽  
Alla Zelenyuk

2016 ◽  
Author(s):  
L. Li ◽  
P. Tang ◽  
S. Nakao ◽  
D. R. Cocker III

Abstract. The molecular structure of volatile organic compounds (VOC) determines their oxidation pathway, directly impacting secondary organic aerosol (SOA) formation. This study comprehensively investigates the impact of molecular structure on SOA formation from the photooxidation of twelve different eight to nine carbon aromatic hydrocarbons under low NOx conditions. The effects of the alkyl substitute number, location, carbon chain length and branching structure on the photooxidation of aromatic hydrocarbons are demonstrated by analyzing SOA yield, chemical composition and physical properties. Aromatic hydrocarbons, categorized into five groups, show a yield order of ortho (o-xylene and o-ethyltoluene) > one substitute (ethylbenzene, propylbenzene and isopropylbenzene) > meta (m-xylene and m-ethyltoluene) > three substitute (trimethylbenzenes) > para (p-xylene and p-ethyltoluene). SOA yields of aromatic hydrocarbon photooxidation do not monotonically decrease when increasing alkyl substitute number. The ortho position promotes SOA formation while the para position suppresses aromatic oxidation and SOA formation. Observed SOA chemical composition and volatility confirm that higher yield is associated with further oxidation. SOA chemical composition also suggests that aromatic oxidation increases with increasing alkyl substitute chain length and branching structure. Further, carbon dilution theory developed by Li et al. (2015a) is extended in this study to serve as a standard method to determine the extent of oxidation of an alkyl substituted aromatic hydrocarbon.


2021 ◽  
Vol 21 (15) ◽  
pp. 11545-11562
Author(s):  
Louise N. Jensen ◽  
Manjula R. Canagaratna ◽  
Kasper Kristensen ◽  
Lauriane L. J. Quéléver ◽  
Bernadette Rosati ◽  
...  

Abstract. This work investigates the individual and combined effects of temperature and volatile organic compound precursor concentrations on the chemical composition of particles formed in the dark ozonolysis of α-pinene. All experiments were conducted in a 5 m3 Teflon chamber at an initial ozone concentration of 100 ppb and initial α-pinene concentrations of 10 and 50 ppb, respectively; at constant temperatures of 20, 0, or −15 ∘C; and at changing temperatures (ramps) from −15 to 20 and from 20 to −15 ∘C. The chemical composition of the particles was probed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). A four-factor solution of a positive matrix factorization (PMF) analysis of the combined HR-ToF-AMS data is presented. The PMF analysis and the elemental composition analysis of individual experiments show that secondary organic aerosol particles with the highest oxidation level are formed from the lowest initial α-pinene concentration (10 ppb) and at the highest temperature (20 ∘C). A higher initial α-pinene concentration (50 ppb) and/or lower temperature (0 or −15 ∘C) results in a lower oxidation level of the molecules contained in the particles. With respect to the carbon oxidation state, particles formed at 0 ∘C are more comparable to particles formed at −15 ∘C than to those formed at 20 ∘C. A remarkable observation is that changes in temperature during particle formation result in only minor changes in the elemental composition of the particles. Thus, the temperature at which aerosol particle formation is induced seems to be a critical parameter for the particle elemental composition. Comparison of the HR-ToF-AMS-derived estimates of the content of organic acids in the particles based on m/z 44 in the mass spectra show good agreement with results from off-line molecular analysis of particle filter samples collected from the same experiments. Higher temperatures are associated with a decrease in the absolute mass concentrations of organic acids (R-COOH) and organic acid functionalities (-COOH), while the organic acid functionalities account for an increasing fraction of the measured particle mass.


2016 ◽  
Vol 50 (10) ◽  
pp. 4997-5006 ◽  
Author(s):  
Rebecca M. Harvey ◽  
Adam P. Bateman ◽  
Shashank Jain ◽  
Yong Jie Li ◽  
Scot Martin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document