scholarly journals Catalysis of “outer-phase” oxygen atom exchange reactions by encapsulated “inner-phase” water in {V15Sb6}-type polyoxovanadates

2016 ◽  
Vol 7 (4) ◽  
pp. 2684-2694 ◽  
Author(s):  
Michael Wendt ◽  
Ulrike Warzok ◽  
Christian Näther ◽  
Jan van Leusen ◽  
Paul Kögerler ◽  
...  

A water molecule encapsulated inside water-soluble {V15Sb6} antimonato polyoxovanadate cages accelerates oxygen-exchange reactions in the cluster periphery.

2018 ◽  
Author(s):  
Theodora Nah ◽  
Hongyu Guo ◽  
Amy P. Sullivan ◽  
Yunle Chen ◽  
David J. Tanner ◽  
...  

Abstract. The implementation of stringent emission regulations has resulted in the decline of anthropogenic pollutants including sulfur dioxide (SO2), nitrogen oxides (NOx) and carbon monoxide (CO). In contrast, ammonia (NH3) emissions are largely unregulated, with emissions projected to increase in the future. We present real-time aerosol and gas measurements from a field study conducted in an agricultural-intensive region in the southeastern U.S. during the fall of 2016 to investigate how NH3 affects particle acidity and SOA formation via the gas-particle partitioning of semi-volatile organic acids. Particle water and pH were determined using the ISORROPIA-II thermodynamic model and validated by comparing predicted inorganic HNO3-NO3− and NH3-NH4+ gas-particle partitioning ratios with measured values. Our results showed that despite the high NH3 concentrations (study average 8.1 ± 5.2 ppb), PM1 were highly acidic with pH values ranging from 0.9 to 3.8, and a study-averaged pH of 2.2 ± 0.6. PM1 pH varied by approximately 1.4 units diurnally. Formic and acetic acids were the most abundant gas-phase organic acids, and oxalate was the most abundant particle-phase water-soluble organic acid anion. Measured particle-phase water-soluble organic acids were on average 6 % of the total non-refractory PM1 organic aerosol mass. The measured molar fraction of oxalic acid in the particle phase (i.e., particle-phase oxalic acid molar concentration divided by the total oxalic acid molar concentration) ranged between 47 and 90 % for PM1 pH 1.2 to 3.4. The measured oxalic acid gas-particle partitioning ratios were in good agreement with their corresponding thermodynamic predictions, calculated based on oxalic acid’s physicochemical properties, ambient temperature, particle water and pH. In contrast, gas-particle partitioning of formic and acetic acids were not well predicted for reasons currently unknown. For this study, higher NH3 concentrations relative to what has been measured in the region in previous studies had minor effects on PM1 organic acids and their influence on the overall organic aerosol and PM1 mass concentrations.


2016 ◽  
Vol 871 ◽  
pp. 96-103 ◽  
Author(s):  
Vladimir Erofeev ◽  
Aleksandr Bobryshev ◽  
Aleksandr Lakhno ◽  
Lenar Shafigullin ◽  
Ilnaz Khalilov ◽  
...  

Presents the results of studies of contemporary materials in the field of rheological state. The topological mortar structure has been provided by theoretical evaluation of the rheological state of the cross-linked solutions and the experimental viscosity data of the sand cement mortar which has been modified by water-soluble additive – polyoxyethylene. The general model has been made for the structure of non-Newtonian liquideous systems including dilatant, pseudoplastic bodies with two main rheological active components in their structure – rigid and viscous phases. It is shown that in pseudoplastic systems, as the shear stress increases, the viscous phase grows because of the reduction of rigid phase content. In dilatant systems the converse situation has been observed. Furthermore, these phases are not clearly distinguishable, but to the contrary they are spatially interconnected in a complex way. The structure modeling has been made for non-Newtonian bodies using the Shklovskii-de Gennes model. The studies have found that the construction composite sand cement system is defined as the pseudoplastic body where cement and sand act as the rigid phase, water solution of polyoxyethylene – as the viscous phase. These findings can be used to prove the influence of polymer powder on the workability of dry mortar.


2006 ◽  
Vol 61 (6) ◽  
pp. 758-765 ◽  
Author(s):  
Matthias Nolte ◽  
Ingo Pantenburg ◽  
Gerd Meyer

[{Hg(CF3)2}(ThpH)(H2O)](H2O) (1), [{Hg4(Thp)4}(ClO4)4(H2O)8](H2O)4 (2), [{Hg(ThpH)2} (NO3)](NO3) (3) and {Hg(Thp)Cl}(H2O) (4) (ThpH = theophylline, C7H8N4O2) have been synthesized by slow evaporation of aqueous solutions of the mercuric salts Hg(CF3)2, Hg(ClO4)2, Hg(NO3)2, or HgCl2 and theophylline. Their crystal structures were determined on the basis of single crystal X-ray data. The coordination polymers 1 and 2 crystallize with triclinic symmetry, P1̅ (no. 2), with a = 468.8(2), b = 1256.4(5), c = 1445.5(6) pm, α = 67.15(3), β = 89.21(3), γ = 89.40(3)° and a = 833.6(1), b = 1862.7(2), c = 2182.9(2) pm, α = 111.61(1), β = 90.98(1), γ = 95.51(1)°, respectively. 3 and 4 crystallize with monoclinic symmetry, Pc (no. 7), a =1194.1(1), b=1258.8(2), c=735.5(2) pm, β =96.96(2)° and P21/n (no. 14), a=1069.0(2), b =911.6(1), c=1089.9(2) pm and β = 96.87(2)°. In 1 the theophylline molecules are non-coordinating to mercury and leave the Hg(CF3)2 molecule unchanged. Only weak electrostatic attractions to one keto-oxygen atom of theophylline and one water molecule hold this co-crystallisate together. In 2, the theophyllinate anion, Thp−, strongly coordinates with both N(7) and N(9) to HgII forming a large ring with eight Hg atoms that incorporates the water molecules. One sort of nitrate ions in 3 is weakly attached to HgII with the theophylline molecules still bound strongly through N(9). The chloride ligand and the theophyllinate ion seem to have the same strengths as ligands in 4 as they are both attached to HgII with the shortest distances possible


2007 ◽  
Vol 413 (2) ◽  
pp. 81-83 ◽  
Author(s):  
S. M. Busurin ◽  
Yu. G. Morozov ◽  
M. V. Kuznetsov ◽  
M. L. Chernega

1991 ◽  
Vol 44 (12) ◽  
pp. 1783 ◽  
Author(s):  
XM Chen ◽  
TCW Mak

The complex silver(I) 3-carboxylato-1-pyridinioacetate monohydrate, [Ag{C5H4(COO)NCH2.COO}]n.nH2O, crystallizes in space group P21/c (No. 14), with Z-4, a 12.233(6), b 5.049(1), c 14.418(7)Ǻ, and β 94.96(4)°; the structure was refined to RF -0.057 for 1721 observed [I ≥ 3σ(I)] Mo Kα data. The silver(I) atom is coordinated by four carboxylato oxygen atoms in a distorted tetrahedral environment [Ag-O 2.284(5)-2.570(5)Ǻ]. The tridentate acetato group bridges the Ag1 atoms into a zigzag chain featuring an uncommon [Ag2( carboxylato -O,O′)(carboxylato-μ-1,1-O)] six- membered ring, and the coordination sphere about each metal centre is completed by the unidentate aromatic carboxylato group, resulting in a two-dimensional network in the solid. The lattice water molecule forms hydrogen bonds with the uncoordinated oxygen atom of the aromatic carboxylato group [2.755(9)Ǻ] and the coordinated oxygen atom of the acetato group [2.936(9)Ǻ].


1938 ◽  
Vol 2 (6) ◽  
pp. 569-573 ◽  
Author(s):  
MURRAY. SENKUS ◽  
WELDON G. BROWN

1939 ◽  
Vol 61 (4) ◽  
pp. 880-886 ◽  
Author(s):  
Whitney H. Mears ◽  
Harry. Sobotka

Sign in / Sign up

Export Citation Format

Share Document