scholarly journals Consideration of land use change-induced surface albedo effects in life-cycle analysis of biofuels

2016 ◽  
Vol 9 (9) ◽  
pp. 2855-2867 ◽  
Author(s):  
H. Cai ◽  
J. Wang ◽  
Y. Feng ◽  
M. Wang ◽  
Z. Qin ◽  
...  

Land use change (LUC)-induced surface albedo effects for expansive biofuel production need to be quantified for improved understanding of biofuel climate impacts.

2012 ◽  
Vol 9 (71) ◽  
pp. 1105-1119 ◽  
Author(s):  
Susan Tarka Sanchez ◽  
Jeremy Woods ◽  
Mark Akhurst ◽  
Matthew Brander ◽  
Michael O'Hare ◽  
...  

The expansion of land used for crop production causes variable direct and indirect greenhouse gas emissions, and other economic, social and environmental effects. We analyse the use of life cycle analysis (LCA) for estimating the carbon intensity of biofuel production from indirect land-use change (ILUC). Two approaches are critiqued: direct, attributional life cycle analysis and consequential life cycle analysis (CLCA). A proposed hybrid ‘combined model’ of the two approaches for ILUC analysis relies on first defining the system boundary of the resulting full LCA. Choices are then made as to the modelling methodology (economic equilibrium or cause–effect), data inputs, land area analysis, carbon stock accounting and uncertainty analysis to be included. We conclude that CLCA is applicable for estimating the historic emissions from ILUC, although improvements to the hybrid approach proposed, coupled with regular updating, are required, and uncertainly values must be adequately represented; however, the scope and the depth of the expansion of the system boundaries required for CLCA remain controversial. In addition, robust prediction, monitoring and accounting frameworks for the dynamic and highly uncertain nature of future crop yields and the effectiveness of policies to reduce deforestation and encourage afforestation remain elusive. Finally, establishing compatible and comparable accounting frameworks for ILUC between the USA, the European Union, South East Asia, Africa, Brazil and other major biofuel trading blocs is urgently needed if substantial distortions between these markets, which would reduce its application in policy outcomes, are to be avoided.


2017 ◽  
Vol 7 (1) ◽  
pp. e00125 ◽  
Author(s):  
Andrea Nocentini ◽  
John Field ◽  
Andrea Monti ◽  
Keith Paustian

2018 ◽  
Vol 125 ◽  
pp. 556-566 ◽  
Author(s):  
Ignacio A. Fernández-Coppel ◽  
Anderson Barbosa-Evaristo ◽  
Adriana Corrêa-Guimarães ◽  
Jesús Martín-Gil ◽  
Luis M. Navas-Gracia ◽  
...  

2011 ◽  
Vol 1 (2) ◽  
pp. 224-232 ◽  
Author(s):  
Andre M. Nassar ◽  
Leila Harfuch ◽  
Luciane C. Bachion ◽  
Marcelo R. Moreira

The use of agricultural-based biofuels has expanded. Discussions on how to assess green house gas (GHG) emissions from biofuel policies, specifically on (non-observed) land-use change (LUC) effects involve two main topics: (i) the limitations on the existing methodologies, and (ii) how to isolate the effects of biofuels. This paper discusses the main methodologies currently used by policy-makers to take decisions on how to quantify LUCs owing to biofuel production expansion. It is our opinion that the concerns regarding GHG emissions associated with LUCs should focus on the agricultural sector as a whole rather than concentrating on biofuel production. Actually, there are several limitations of economic models and deterministic methodologies for simulating and explaining LUCs resulting from the expansion of the agricultural sector. However, it is equally true that there are avenues of possibilities to improve models and make them more accurate and precise in order to be used for policy-making. Models available need several improvements to reach perfection. Any top model requires a concentration of interdisciplinary designers in order to replicate empirical evidence and capture correctly the agricultural sector dynamics for different countries and regions. Forgetting those limitations means that models will be used for the wrong purposes.


2008 ◽  
Vol 32 (4) ◽  
pp. 473-494 ◽  
Author(s):  
Huqiang Zhang ◽  
Xuejie Gao ◽  
Yaohui Li

2017 ◽  
Vol 28 ◽  
pp. 270-281 ◽  
Author(s):  
Marie-Odile P. Fortier ◽  
Griffin W. Roberts ◽  
Susan M. Stagg-Williams ◽  
Belinda S.M. Sturm

2012 ◽  
Vol 03 (03) ◽  
pp. 1250015 ◽  
Author(s):  
ALLA A. GOLUB ◽  
THOMAS W. HERTEL

This paper reviews an analysis of land use change impacts of expanded biofuel production with GTAP-BIO computable general equilibrium (CGE) model. It describes the treatment of energy substitution, the role of biofuel by-products, specification of bilateral trade, the determination of land cover changes in response to increased biofuel feedstock production, and changes in crop yields – both at the intensive and extensive margins. The paper responds to some of the criticisms of GTAP-BIO and provides insights into the sensitivity of land use change and GHG emissions to changes in key parameters and assumptions. In particular, it considers an alternative specification of acreage response that takes into account the degree of land heterogeneity within agro-ecological zone (AEZ) for different AEZs and countries. The paper concludes with the discussion of alternative specifications of land mobility across uses employed in CGE models and the agenda for further research to narrow parametric and structural uncertainty to improve the model's performance.


Sign in / Sign up

Export Citation Format

Share Document