albedo change
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 12)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Vol 302 ◽  
pp. 113938
Author(s):  
Jiangui Liu ◽  
Raymond L. Desjardins ◽  
Shusen Wang ◽  
Devon E. Worth ◽  
Budong Qian ◽  
...  

2021 ◽  
Vol 21 (12) ◽  
pp. 9887-9907
Author(s):  
Ryan M. Bright ◽  
Marianne T. Lund

Abstract. Management of Earth's surface albedo is increasingly viewed as an important climate change mitigation strategy both on (Seneviratne et al., 2018) and off (Field et al., 2018; Kravitz et al., 2018) the land. Assessing the impact of a surface albedo change involves employing a measure like radiative forcing (RF) which can be challenging to digest for decision-makers who deal in the currency of CO2-equivalent emissions. As a result, many researchers express albedo change (Δα) RFs in terms of their CO2-equivalent effects, despite the lack of a standard method for doing so, such as there is for emissions of well-mixed greenhouse gases (WMGHGs; e.g., IPCC AR5, Myhre et al., 2013). A major challenge for converting Δα RFs into their CO2-equivalent effects in a manner consistent with current IPCC emission metric approaches stems from the lack of a universal time dependency following the perturbation (perturbation “lifetime”). Here, we review existing methodologies based on the RF concept with the goal of highlighting the context(s) in which the resulting CO2-equivalent metrics may or may not have merit. To our knowledge this is the first review dedicated entirely to the topic since the first CO2-eq. metric for Δα surfaced 20 years ago. We find that, although there are some methods that sufficiently address the time-dependency issue, none address or sufficiently account for the spatial disparity between the climate response to CO2 emissions and Δα – a major critique of Δα metrics based on the RF concept (Jones et al., 2013). We conclude that considerable research efforts are needed to build consensus surrounding the RF “efficacy” of various surface forcing types associated with Δα (e.g., crop change, forest harvest), and the degree to which these are sensitive to the spatial pattern, extent, and magnitude of the underlying surface forcings.


2021 ◽  
Vol 48 (10) ◽  
Author(s):  
Gabriel Lewis ◽  
Erich Osterberg ◽  
Robert Hawley ◽  
Hans Peter Marshall ◽  
Tate Meehan ◽  
...  

2020 ◽  
Author(s):  
Ryan M. Bright ◽  
Marianne T. Lund

Abstract. Management of Earth's surface albedo is increasingly viewed as an important climate change mitigation strategy both on (Seneviratne et al., 2018) and off (Field et al., 2018; Kravitz et al., 2018) the land. Assessing the impact of a surface albedo change involves employing a measure like radiative forcing (RF) which can be challenging to digest for decision-makers who deal in the currency of CO2-equivalent emissions. As a result, many researchers express albedo change (Δα) RFs in terms of their CO2-equivalent effects, despite the lack of a standard method for doing so, such as there is for emissions of well-mixed greenhouse gases (WMGHGs; e.g., IPCC AR5, Myhre et al. (2013)). A major challenge for converting Δα RFs into their CO2-equivalant effects in a manner consistent with current IPCC emission metric approaches stems from the lack of a universal time-dependency following the perturbation (perturbation lifetime). Here, we review existing methodologies based on the RF concept with the goal of highlighting the context(s) in which the resulting CO2-equivalent metrics may or may not have merit. To our knowledge this is the first review dedicated entirely to the topic since the first CO2-eq. metric for Δα surfaced 20 years ago. We find that, although there are some methods that sufficiently address the time-dependency issue, none address or sufficiently account for the spatial disparity between the climate response to CO2 emissions and Δα – a major critique of Δα metrics based on the RF concept (Jones et al., 2013). We conclude that considerable research efforts are needed to build consensus surrounding the RF efficacy of various surface forcing types associated with Δα (e.g., crop change, forest harvest, etc.), and the degree to which these are sensitive to the spatial pattern, extent, and magnitude of the underlying surface forcings.


2020 ◽  
Author(s):  
Bernardo Mota ◽  
Nadine Gobron ◽  
Christian Lanconelli ◽  
Fabrizio Capucci

<p><span>This paper addresses the product consistency in a cross-ECV model space driven ECV’s to estimate the radiative forcing (RF) due to the direct effect of fire- driven surface albedo change. </span><span>Monthly radiative forcing’s are modeled </span><span>using three Earth Observation land surface albedo (MCD43C3, GlobAlbedo and Copernicus Global Land Services) and five burnt area (FireCCIv4, FireCCIv5, MCD45C5, MCD64C6 and Copernicus Global Land Services) products, and the ERA5 downward Solar radiation at the Surface</span><span>. </span><span>The ensemble consistency is analyzed spatially and seasonally by vegetation cover type using the Land Cover CCI product, and using four spatial resolutions (0.05</span><span>°</span><span>, 0.10</span><span>°</span><span>, 025</span><span>°</span><span> and 0.5</span><span>°). </span><span>Results </span><span>show that depending on the combined products and spatial resolution, estimates can differ significantly. In general, higher estimates result at coarser resolutions and variation between product combinations can differ between 26% to 46%, depending on the type of vegetation. In addition, significant temporal trends of opposing signs can be detected. </span><span>This study presents an example of cross-ECV modelling. Due to the increasing number, and coverage, of Earth Observation satellite programs, these results highlight the need to assess the </span><span>fitness for purpose </span><span>of the derived products.</span></p>


2019 ◽  
Vol 12 (9) ◽  
pp. 3975-3990 ◽  
Author(s):  
Ryan M. Bright ◽  
Thomas L. O'Halloran

Abstract. Due to the potential for land-use–land-cover change (LULCC) to alter surface albedo, there is need within the LULCC science community for simple and transparent tools for predicting radiative forcings (ΔF) from surface albedo changes (Δαs). To that end, the radiative kernel technique – developed by the climate modeling community to diagnose internal feedbacks within general circulation models (GCMs) – has been adopted by the LULCC science community as a tool to perform offline ΔF calculations for Δαs. However, the codes and data behind the GCM kernels are not readily transparent, and the climatologies of the atmospheric state variables used to derive them vary widely both in time period and duration. Observation-based kernels offer an attractive alternative to GCM-based kernels and could be updated annually at relatively low costs. Here, we present a radiative kernel for surface albedo change founded on a novel, simplified parameterization of shortwave radiative transfer driven with inputs from the Clouds and the Earth's Radiant Energy System (CERES) Energy Balance and Filled (EBAF) products. When constructed on a 16-year climatology (2001–2016), we find that the CERES-based albedo change kernel – or CACK – agrees remarkably well with the mean kernel of four GCMs (rRMSE = 14 %). When the novel parameterization underlying CACK is applied to emulate two of the GCM kernels using their own boundary fluxes as input, we find even greater agreement (mean rRMSE = 7.4 %), suggesting that this simple and transparent parameterization represents a credible candidate for a satellite-based alternative to GCM kernels. We document and compute the various sources of uncertainty underlying CACK and include them as part of a more extensive dataset (CACK v1.0) while providing examples showcasing its application.


Sign in / Sign up

Export Citation Format

Share Document