Synthesis and photophysical properties of extended π conjugated naphthalimides

2017 ◽  
Vol 16 (4) ◽  
pp. 539-546 ◽  
Author(s):  
C. Rémy ◽  
C. Allain ◽  
I. Leray

A series of π conjugated naphthalimide derivatives were prepared. Compounds display efficient photoinduced charge transfer in solution which was rationalized by time-resolved spectroscopy and modelled by TD-DFT calculations.

2000 ◽  
Vol 61 (15) ◽  
pp. 9917-9920 ◽  
Author(s):  
S. C. J. Meskers ◽  
P. A. van Hal ◽  
A. J. H. Spiering ◽  
J. C. Hummelen ◽  
A. F. G. van der Meer ◽  
...  

2017 ◽  
Vol 2018 (3-4) ◽  
pp. 272-277 ◽  
Author(s):  
Serhane Zerdane ◽  
Marco Cammarata ◽  
Lodovico Balducci ◽  
Roman Bertoni ◽  
Laure Catala ◽  
...  

1996 ◽  
Vol 93 ◽  
pp. 1697-1713 ◽  
Author(s):  
P Changenet ◽  
P Plaza ◽  
MM Martin ◽  
YH Meyer ◽  
W Rettig

2020 ◽  
Author(s):  
Masaki Saigo ◽  
Kiyoshi Miyata ◽  
Hajime Nakanotani ◽  
Chihaya Adachi ◽  
Ken Onda

We have investigated the solvent-dependence of structural changes along with intersystem crossing of a thermally activated delayed fluorescence (TADF) molecule, 3,4,5-tri(9H-carbazole-9-yl)benzonitrile (o-3CzBN), in toluene, tetrahydrofuran, and acetonitrile solutions using time-resolved infrared (TR-IR) spectroscopy and DFT calculations. We found that the geometries of the S1 and T1 states are very similar in all solvents though the photophysical properties mostly depend on the solvent. In addition, the time-dependent DFT calculations based on these geometries suggested that the thermally activated delayed fluorescence process of o-3CzBN is governed more by the higher-lying excited states than by the structural changes in the excited states.<br>


2020 ◽  
Author(s):  
Zhengqing Tong ◽  
Margaret S. Cheung ◽  
Barry D. Dunietz ◽  
Eitan Geva ◽  
Xiang Sun

The nonequilibrium Fermi’s golden rule (NE-FGR) describes the time-dependent rate coefficient for electronic transitions, when the nuclear degrees of freedom start out in a <i>nonequilibrium</i> state. In this letter, the linearized semiclassical (LSC) approximation of the NE-FGR is used to calculate the photoinduced charge transfer rates in the carotenoid-porphyrin-C<sub>60</sub> molecular triad dissolved in explicit tetrahydrofuran. The initial nonequilibrium state corresponds to impulsive photoexcitation from the equilibrated ground-state to the ππ* state, and the porphyrin-to-C<sub>60</sub> and the carotenoid-to-C<sub>60</sub> charge transfer rates are calculated. Our results show that accounting for the nonequilibrium nature of the initial state significantly enhances the transition rate of the porphyrin-to-C<sub>60</sub> CT process. We also derive the instantaneous Marcus theory (IMT) from LSC NE-FGR, which casts the CT rate coefficients in terms of a Marcus-like expression, with explicitly time-dependent reorganization energy and reaction free energy. IMT is found to reproduce the CT rates in the system under consideration remarkably well.


Sign in / Sign up

Export Citation Format

Share Document