Computational study on thermally activated delayed fluorescence of donor–linker–acceptor network molecules

RSC Advances ◽  
2016 ◽  
Vol 6 (43) ◽  
pp. 37203-37211 ◽  
Author(s):  
Talapunur Vikramaditya ◽  
Mukka Saisudhakar ◽  
Kanakamma Sumithra

Using density functional theory we have investigated the structure–property relationships of organic molecules with a donor–linker–acceptor (DLA) framework, which can be used as precursors of OLED materials.

2018 ◽  
Vol 3 (7) ◽  
Author(s):  
Ayşegül Gümüş ◽  
Selçuk Gümüş

Abstract 2,3-Dicyanopyrazine based acceptor was combined with a series of well studied donors to obtain donor-acceptor type potential thermally activated delayed fluorescence emitters. Their structural and electronic properties were computed theoretically at the level of density functional theory and time dependent density functional theory with the application of two different hybrid functionals and various basis sets. Almost all of the designed structures were computed to have the potential of being TADF compounds since they possess very narrow singlet-triplet gaps. Indeed, acridine-pyrazine (9) derivative was calculated to be the best candidate for the purpose among them.


2015 ◽  
Vol 15 (10) ◽  
pp. 7819-7822 ◽  
Author(s):  
Dong Yuel Kwon ◽  
Geon Hyeong Lee ◽  
Young Sik Kim

Four novel thermally activated delayed fluorescence (TADF) materials with 9,10-dihydro-9,9- dimethylacridine (DMAC) and phenylindolo(2,3-a)carbazole (PIC) as electron donors and benzazole derivatives (BO, and BT) as electron acceptors (DMAC-BO, DMAC-BT, PIC-BO, and PIC-BT) were designed and theoretically investigated for use as a blue organic light emitting diode (OLED) emitter. Using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations, we calculated the electron distribution of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), and the energy of the lowest singlet (S1) and the lowest triplet (T1) excited states. All the dyes had a small spatial overlap between the HOMO and LUMO because of the relatively large dihedral angle between the phenyl ring and the acceptor moiety. In terms of the energy difference (ΔEST) between the S1 state and the T1 state, DMAC-BO and DMAC-BT showed the small ΔEST (0.18 eV and 0.21 eV, respectively). However, PIC-BO and PIC-BT showed the large ΔEST (0.62 eV and 0.61 eV, respectively). Among the TADF materials, we showed that DMAC-BO would have the best TADF properties in terms of small ΔEST and blue OLED emitters


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1125
Author(s):  
Teng Teng ◽  
Jinfan Xiong ◽  
Gang Cheng ◽  
Changjiang Zhou ◽  
Xialei Lv ◽  
...  

A new series of tetrahedral heteroleptic copper(I) complexes exhibiting efficient thermally-activated delayed fluorescence (TADF) in green to orange electromagnetic spectral regions has been developed by using D-A type N^N ligand and P^P ligands. Their structures, electrochemical, photophysical, and electroluminescence properties have been characterized. The complexes exhibit high photoluminescence quantum yields (PLQYs) of up to 0.71 at room temperature in doped film and the lifetimes are in a wide range of 4.3–24.1 μs. Density functional theory (DFT) calculations on the complexes reveal the lowest-lying intraligand charge-transfer excited states that are localized on the N^N ligands. Solution-processed organic light emitting diodes (OLEDs) based on one of the new emitters show a maximum external quantum efficiency (EQE) of 7.96%.


2013 ◽  
Vol 12 (01) ◽  
pp. 1250094 ◽  
Author(s):  
HONGBO DU ◽  
YU JIA ◽  
RUI-QIN ZHANG

The energetically favorable structures and characteristic infrared (IR) and Raman peaks of Ti n O m(n = 2–4, m ≤ 2n) clusters are obtained in this work using a B3LYP/6-311G(d) method of density functional theory (DFT). The structures with m < 2n compose of Ti atoms of lower numbers of coordination with O atoms, providing many dangling bonds which considerably enhance the reactivity compared with its bulk counterpart. Two- and three-coordinated O atoms present for m/n ≤ 1.5, whereas two- and also single-coordinated O atoms are found for m/n > 1.5. The Ti n O m(n = 2–4, m < 2n) clusters show strong IR peaks in the range of 600–1100 cm-1 and strong Raman peaks in the region of 300–800 cm-1, whereas both the IR and Raman spectrum peaks of the Ti n O m(n = 2–4, m = 2n) clusters are in the region of 700–1100 cm-1. The main Raman peak of the Ti n O m(m ≠ 2n) clusters is at a frequency considerably lower than that of the IR spectrum. Our results can help understand the structure-property relationships of the Ti n O m clusters and provide their characteristic spectroscope features for further experimental identification.


Sign in / Sign up

Export Citation Format

Share Document