Application of a Zn(ii) based metal–organic framework as an efficient solid-phase extraction sorbent for preconcentration of plasticizer compounds

RSC Advances ◽  
2016 ◽  
Vol 6 (46) ◽  
pp. 40211-40218 ◽  
Author(s):  
Elham Tahmasebi ◽  
Mohammad Yaser Masoomi ◽  
Yadollah Yamini ◽  
Ali Morsali

A solid-phase extraction (SPE) sorbent, a Zn(ii) based metal–organic framework, was prepared via a simple, solventless, green and a low-cost mechanosynthesis process.

Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 690 ◽  
Author(s):  
Providencia González-Hernández ◽  
Ana Lago ◽  
Jorge Pasán ◽  
Catalina Ruiz-Pérez ◽  
Juan Ayala ◽  
...  

The pillared-layer Zn-triazolate metal-organic framework (CIM-81) was synthesized, characterized, and used for the first time as a sorbent in a dispersive micro-solid phase extraction method. The method involves the determination of a variety of personal care products in wastewaters, including four preservatives, four UV-filters, and one disinfectant, in combination with ultra-high performance liquid chromatography and UV detection. The CIM-81 MOF, constructed with an interesting mixed-ligand synthetic strategy, demonstrated a better extraction performance than other widely used MOFs in D-µSPE such as UiO-66, HKUST-1, and MIL-53(Al). The optimization of the method included a screening design followed by a Doehlert design. Optimum conditions required 10 mg of CIM-81 MOF in 10 mL of the aqueous sample at a pH of 5, 1 min of agitation by vortex and 3 min of centrifugation in the extraction step; and 1.2 mL of methanol and 4 min of vortex in the desorption step, followed by filtration, evaporation and reconstitution with 100 µL of the initial chromatographic mobile phase. The entire D-µSPE-UHPLC-UV method presented limits of detection down to 0.5 ng·mL−1; intra-day and inter-day precision values for the lowest concentration level (15 ng·mL−1)-as a relative standard deviation (in %)-lower than 8.7 and 13%, respectively; average relative recovery values of 115%; and enrichment factors ranging from ~3.6 to ~34. The reuse of the CIM-81 material was assessed not only in terms of maintaining the analytical performance but also in terms of its crystalline stability.


2013 ◽  
Vol 180 (7-8) ◽  
pp. 589-597 ◽  
Author(s):  
Mahmoud Reza Sohrabi ◽  
Zahra Matbouie ◽  
Ali Akbar Asgharinezhad ◽  
Ali Dehghani

Sign in / Sign up

Export Citation Format

Share Document