Recent progress of silicon composites as anode materials for secondary batteries

RSC Advances ◽  
2016 ◽  
Vol 6 (90) ◽  
pp. 87778-87790 ◽  
Author(s):  
Jingjing Wang ◽  
Tingting Xu ◽  
Xiao Huang ◽  
Huan Li ◽  
Tingli Ma

This review mainly focuses on the latest research achievements of Si composites and their nanostructures as anode materials in lithium-ion batteries. The most recent applications of Si to sodium-ion and magnesium-ion batteries are also included.

2021 ◽  
Vol 2 (6) ◽  
pp. 2170015
Author(s):  
Chengzhi Zhang ◽  
Fei Wang ◽  
Jian Han ◽  
Shuo Bai ◽  
Jun Tan ◽  
...  

2018 ◽  
Vol 6 (15) ◽  
pp. 6183-6205 ◽  
Author(s):  
Wanlin Wang ◽  
Weijie Li ◽  
Shun Wang ◽  
Zongcheng Miao ◽  
Hua Kun Liu ◽  
...  

With the high consumption and increasing price of lithium resources, sodium ion batteries (SIBs) have been considered as attractive and promising potential alternatives to lithium ion batteries, owing to the abundance and low cost of sodium resources, and the similar electrochemical properties of sodium to lithium.


2018 ◽  
Vol 6 (16) ◽  
pp. 6830-6839 ◽  
Author(s):  
Zhuo Wang ◽  
Guosheng Shao

Rechargeable magnesium ion batteries (MIBs) have great potential as an alternative technology to substitute resource-limited lithium-ion batteries (LIBs), but rather difficult transportation of Mg2+ in cathodes and hence low cathode capacities loom as a major roadblock for their applications.


2017 ◽  
Vol 254 ◽  
pp. 246-254 ◽  
Author(s):  
Jianjun Xie ◽  
Yi Pei ◽  
Li Liu ◽  
Shengping Guo ◽  
Jing Xia ◽  
...  

Author(s):  
Fei Zhang ◽  
Tao Jing ◽  
Shao Cai ◽  
Mingsen Deng ◽  
Dongmei Liang ◽  
...  

Rational design of high-performance anode materials is of paramount importance for developing rechargeable lithium ion batteries (LIBs) and sodium ion batteries (SIBs). In this work, ZrC2 monolayer is predicted by...


2016 ◽  
Vol 16 (10) ◽  
pp. 10735-10739 ◽  
Author(s):  
Ju-Seok Song ◽  
Gyu-Bong Cho ◽  
Hyo-Jun Ahn ◽  
Hye-Sung Kim ◽  
Jou-Hyeon Ahn ◽  
...  

2021 ◽  
pp. 2100009
Author(s):  
Chengzhi Zhang ◽  
Fei Wang ◽  
Jian Han ◽  
Shuo Bai ◽  
Jun Tan ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110033
Author(s):  
Raj Shah ◽  
Vikram Mittal ◽  
Eliana Matsil ◽  
Andreas Rosenkranz

Lithium-ion batteries have enabled electric vehicles to achieve a foothold in the automobile market. Due to an increasing environmental consciousness, electric vehicles are expected to take a larger portion of the market, with the ultimate goal of supplanting traditional vehicles. However, the involved costs, sustainability, and technical limitations of lithium-ion batteries do create substantial obstacles to this goal. Therefore, this article aims at presenting magnesium-ion batteries as a potential replacement for lithium-ion batteries. Though still under development, magnesium-ion batteries show promise in achieving similar volumetric and specific capacities to lithium-ion batteries. Additionally, magnesium is substantially more abundant than lithium, allowing for the batteries to be cheaper and more sustainable. Numerous technical challenges related to cathode and electrolyte selection are yet to be solved for magnesium-ion batteries. This paper discusses the current state-of-the-art of magnesium-ion batteries with a particular emphasis on the material selection. Although, current research indicates that sulfur-based cathodes coupled with a (HMDS)2Mg-based electrolyte shows substantial promise, other options could allow for a better performing battery. This paper addresses the challenges (materials and costs) and benefits associated with developing these batteries. When overcoming these challenges, magnesium-ion batteries are posed to be a groundbreaking technology potentially revolutionizing the vehicle industry.


Sign in / Sign up

Export Citation Format

Share Document