Ru-Catalyzed highly site-selective C–H bond arylation of 9-(pyrimidin-2-yl)-9H-carbazole

RSC Advances ◽  
2016 ◽  
Vol 6 (59) ◽  
pp. 54431-54434 ◽  
Author(s):  
K. Harsha Vardhan Reddy ◽  
R. Uday Kumar ◽  
V. Prakash Reddy ◽  
G. Satish ◽  
Jagadeesh Babu Nanubolu ◽  
...  

We describe an efficient ruthenium-catalyzed C–H bond ortho-arylation of 9-(pyrimidin-2-yl)-9H-carbazole using boronic acids. This methodology exhibits excellent and high site-selectivity, functional group tolerance and gave the desired product in moderate to good yields.

2018 ◽  
Vol 54 (22) ◽  
pp. 2759-2762 ◽  
Author(s):  
Lei Pan ◽  
Ke Yang ◽  
Guigen Li ◽  
Haibo Ge

A direct arylation of C–H bonds of ketones enabled by a cheap and commercially available transient ligand with high site-selectivity and functional group compatibility is reported.


2019 ◽  
Author(s):  
Byung Joo Lee ◽  
kimberly deglopper ◽  
Tehshik Yoon

<div> <div> <div> <p>There are relatively few methods that accom- plish the selective alkoxylation of sp3-hybridized C–H bonds, particularly in comparison to the numerous analogous strate- gies for C–N and C–C bond formation. We report a photo- catalytic protocol for the functionalization of benzylic C–H bonds with a wide range of readily available oxygen nucleo- philes. Our strategy merges the photoredox activation of arenes with copper(II)-mediated oxidation of the resulting benzylic radicals, which enables the introduction of benzylic C–O bonds with high site selectivity, chemoselectivity, and functional group tolerance. This method enables the late- stage introduction of complex alkoxy groups into bioactive molecules, providing a practical new tool with potential appli- cations in synthesis and medicinal chemistry. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Byung Joo Lee ◽  
kimberly deglopper ◽  
Tehshik Yoon

<div> <div> <div> <p>There are relatively few methods that accom- plish the selective alkoxylation of sp3-hybridized C–H bonds, particularly in comparison to the numerous analogous strate- gies for C–N and C–C bond formation. We report a photo- catalytic protocol for the functionalization of benzylic C–H bonds with a wide range of readily available oxygen nucleo- philes. Our strategy merges the photoredox activation of arenes with copper(II)-mediated oxidation of the resulting benzylic radicals, which enables the introduction of benzylic C–O bonds with high site selectivity, chemoselectivity, and functional group tolerance. This method enables the late- stage introduction of complex alkoxy groups into bioactive molecules, providing a practical new tool with potential appli- cations in synthesis and medicinal chemistry. </p> </div> </div> </div>


Author(s):  
Byung Joo Lee ◽  
kimberly deglopper ◽  
Tehshik Yoon

<div> <div> <div> <p>There are relatively few methods that accom- plish the selective alkoxylation of sp3-hybridized C–H bonds, particularly in comparison to the numerous analogous strate- gies for C–N and C–C bond formation. We report a photo- catalytic protocol for the functionalization of benzylic C–H bonds with a wide range of readily available oxygen nucleo- philes. Our strategy merges the photoredox activation of arenes with copper(II)-mediated oxidation of the resulting benzylic radicals, which enables the introduction of benzylic C–O bonds with high site selectivity, chemoselectivity, and functional group tolerance. This method enables the late- stage introduction of complex alkoxy groups into bioactive molecules, providing a practical new tool with potential appli- cations in synthesis and medicinal chemistry. </p> </div> </div> </div>


2018 ◽  
Vol 20 (15) ◽  
pp. 3432-3435 ◽  
Author(s):  
Yunfei Tian ◽  
Anbo Ling ◽  
Ren Fang ◽  
Ren Xiang Tan ◽  
Zhong-Quan Liu

A Cu(ii)-mediated radical anti-Markovnikov hydroalkylation of unactivated alkenes with simple alkanes via selective C(sp3)–H bond cleavage was achieved. This reaction features high site-selectivity, diverse functional group tolerance, and scalability.


2017 ◽  
Vol 4 (2) ◽  
pp. 241-249 ◽  
Author(s):  
Neeraj Kumar Mishra ◽  
Mijin Jeon ◽  
Yongguk Oh ◽  
Hyeim Jo ◽  
Jihye Park ◽  
...  

The pyrimidinyl-directed C–H functionalization of indolines with anthranils as amination sources under rhodium(iii) catalysis is described to afford a range of C7-aminated indoline derivatives with excellent site-selectivity and functional group compatibility.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qing-Yuan Meng ◽  
Lena Lezius ◽  
Armido Studer

AbstractMethods that enable site selective acylation of sp3 C-H bonds in complex organic molecules are not well explored, particularly if compared with analogous transformations of aromatic and vinylic sp2 C-H bonds. We report herein a direct acylation of benzylic C-H bonds by merging N-heterocyclic carbene (NHC) and photoredox catalysis. The method allows the preparation of a diverse range of benzylic ketones with good functional group tolerance under mild conditions. The reaction can be used to install acyl groups on highly functionalized natural product derived compounds and the C-H functionalization works with excellent site selectivity. The combination of NHC and photoredox catalysis offers options in preparing benzyl aryl ketones.


2020 ◽  
Author(s):  
Chang-Sheng Wang ◽  
Sabrina Monaco ◽  
Anh Ngoc Thai ◽  
Md. Shafiqur Rahman ◽  
Chen Wang ◽  
...  

A catalytic system comprised of a cobalt-diphosphine complex and a Lewis acid (LA) such as AlMe3 has been found to promote hydrocarbofunctionalization reactions of alkynes with Lewis basic and electron-deficient substrates such as formamides, pyridones, pyridines, and azole derivatives through site-selective C-H activation. Compared with known Ni/LA catalytic system for analogous transformations, the present catalytic system not only feature convenient set up using inexpensive and bench-stable precatalyst and ligand such as Co(acac)3 and 1,3-bis(diphenylphosphino)propane (dppp), but also display distinct site-selectivity toward C-H activation of pyridone and pyridine derivatives. In particular, a completely C4-selective alkenylation of pyridine has been achieved for the first time. Mechanistic stidies including DFT calculations on the Co/Al-catalyzed addition of formamide to alkyne have suggested that the reaction involves cleavage of the carbamoyl C-H bond as the rate-limiting step, which proceeds through a ligand-to-ligand hydrogen transfer (LLHT) mechanism leading to an alkyl(carbamoyl)cobalt intermediate.


2017 ◽  
Author(s):  
Haibo Ge ◽  
Lei Pan ◽  
Piaoping Tang ◽  
Ke Yang ◽  
Mian Wang ◽  
...  

Transition metal-catalyzed selective C–H bond functionalization enabled by transient ligands has become an extremely attractive topic due to its economical and greener characteristics. However, catalytic pathways of this reaction process on unactivated sp<sup>3</sup> carbons of reactants have not been well studied yet. Herein, detailed mechanistic investigation on Pd-catalyzed C(sp<sup>3</sup>)–H bond activation with amino acids as transient ligands has been systematically conducted. The theoretical calculations showed that higher angle distortion of C(sp2)-H bond over C(sp3)-H bond and stronger nucleophilicity of benzylic anion over its aromatic counterpart, leading to higher reactivity of corresponding C(sp<sup>3</sup>)–H bonds; the angle strain of the directing rings of key intermediates determines the site-selectivity of aliphatic ketone substrates; replacement of glycine with β-alanine as the transient ligand can decrease the angle tension of the directing rings. Synthetic experiments have confirmed that β-alanine is indeed a more efficient transient ligand for arylation of β-secondary carbons of linear aliphatic ketones than its glycine counterpart.<br><br>


2019 ◽  
Author(s):  
Hang Shi ◽  
Lu Yi ◽  
Jiang Weng ◽  
Katherine Bay ◽  
Xiangyang Chen ◽  
...  

<p>Site-selective functionalizations of C–H bonds will ultimately afford chemists transformative tools for editing and constructing complex molecular architectures<sup>1-4</sup>. Towards this goal, developing strategies to activate C–H bonds that are distal from a functional group is essential<sup>4-6</sup>. In this context, distinguishing remote C–H bonds on adjacent carbon atoms is an extraordinary challenge due to the lack of electronic or steric bias between the two positions. Herein, we report the design of a catalytic system leveraging a remote directing template and a transient norbornene mediator to selectively activate a previously inaccessible remote C–H bond that is one bond further away. The generality of this approach has been demonstrated with a range of heterocycles, including a complex anti-leukemia agent, and hydrocinnamic acid substrates.</p>


Sign in / Sign up

Export Citation Format

Share Document