Hyaluronic acid/EDC/NHS-crosslinked green electrospun silk fibroin nanofibrous scaffolds for tissue engineering

RSC Advances ◽  
2016 ◽  
Vol 6 (102) ◽  
pp. 99720-99728 ◽  
Author(s):  
Xingxing Yang ◽  
Xiaoyun Wang ◽  
Fan Yu ◽  
Linlin Ma ◽  
Xiaohan Pan ◽  
...  

The mechanical properties of SF nanofibrous matrices were enhanced through crosslinking with HA/EDC/NHS for soft tissue engineering.

2021 ◽  
pp. 004051752110639
Author(s):  
Ye Qi ◽  
Huiyuan Zhai ◽  
Yaning Sun ◽  
Hongxing Xu ◽  
Shaohua Wu ◽  
...  

Electrospun nanofibrous scaffolds have gained extensive attention in the fields of soft tissue engineering and regenerative medicine. In this study, a series of biodegradable nanofibrous meshes were fabricated by electrospinning poly(ε-caprolactone) (PCL) and poly( p-dioxanone) (PPDO) blends with various mass ratios. All the as-developed PCL/PPDO nanofibrous meshes possessed smooth and highly aligned fiber morphology. The mean fiber diameter was 521.5 ± 76.6 nm for PCL meshes and 485.8 ± 88.9 nm for PPDO meshes, and the mean fiber diameter seemed to present a decreasing tendency with the increasing of the PPDO component. For pure PCL meshes, the contact angle was about 117.5 ± 1.6°, the weight loss ratio was roughly 0.2% after 10 weeks of degradation, and the tensile strength was 41.2 ± 2.3 MPa in the longitudinal direction and 4.2 ± 0.1 MPa in the transverse direction. It was found that the surface hydrophilicity and in vitro degradation properties of PCL/PPDO meshes apparently increased, but the mechanical properties of PCL/PPDO meshes obviously decreased when more PPDO component was introduced. The biological tests showed that 4:1 PCL/PPDO nanofibrous meshes and 1:1 PCL/PPDO nanofibrous meshes could obviously promote the adhesion and proliferation of human adipose derived mesenchymal stem cells more than pure PCL and PPDO meshes and 1:4 PCL/PPDO meshes. The results demonstrated that it is feasible to adjust the surface hydrophilicity, degradation profile, and mechanical properties as well as biological properties of as-obtained nanofibrous meshes by blending PCL and PPDO components. This study provides meaningful reference and guidance for the design and development of PCL/PPDO hybrid nanofibrous scaffolds for soft tissue engineering research and application.


2020 ◽  
Vol 237 ◽  
pp. 116107 ◽  
Author(s):  
Mathie Najberg ◽  
Muhammad Haji Mansor ◽  
Théodore Taillé ◽  
Céline Bouré ◽  
Rodolfo Molina-Peña ◽  
...  

Author(s):  
Yi Zhang ◽  
Richard T. Tran ◽  
Dipendra Gyawali ◽  
Jian Yang

Finding an ideal biomaterial with the proper mechanical properties and biocompatibility has been of intense focus in the field of soft tissue engineering. This paper reports on the synthesis and characterization of a novel crosslinked urethane-doped polyester elastomer (CUPOMC), which was synthesized by reacting a previously developed photocrosslinkable poly (octamethylene maleate citrate) (POMC) prepolymers (pre-POMC) with 1,6-hexamethylene diisocyanate (HDI) followed by thermo- or photo-crosslinking polymerization. The mechanical properties of the CUPOMCs can be tuned by controlling the molar ratios of pre-POMC monomers, and the ratio between the prepolymer and HDI. CUPOMCs can be crosslinked into a 3D network through polycondensation or free radical polymerization reactions. The tensile strength and elongation at break of CUPOMC synthesized under the known conditions range from 0.73±0.12MPa to 10.91±0.64MPa and from 72.91±9.09% to 300.41±21.99% respectively. Preliminary biocompatibility tests demonstrated that CUPOMCs support cell adhesion and proliferation. Unlike the pre-polymers of other crosslinked elastomers, CUPOMC pre-polymers possess great processability demonstrated by scaffold fabrication via a thermally induced phase separation method. The dual crosslinking methods for CUPOMC pre-polymers should enhance the versatile processability of the CUPOMC used in various conditions. Development of CUPOMC should expand the choices of available biodegradable elastomers for various biomedical applications such as soft tissue engineering.


RSC Advances ◽  
2014 ◽  
Vol 4 (60) ◽  
pp. 32017-32023 ◽  
Author(s):  
Adrien Leroy ◽  
Assala Al Samad ◽  
Xavier Garric ◽  
Sylvie Hunger ◽  
Danièle Noël ◽  
...  

Degradable and biocompatible networks have been prepared via thiol–yne photochemistry from novel alkyne multifunctional PCL. The mechanical properties of these cross-linked biomaterials could make them good candidates for soft tissues scaffolds.


Sign in / Sign up

Export Citation Format

Share Document