Three-dimensional NiCo2O4/NiCo2S4hybrid nanostructure on Ni-foam as a high-performance supercapacitor electrode

RSC Advances ◽  
2016 ◽  
Vol 6 (98) ◽  
pp. 95760-95767 ◽  
Author(s):  
Shipra Raj ◽  
Suneel Kumar Srivastava ◽  
Pradip Kar ◽  
Poulomi Roy

The high performance electrode for supercapacitor based on NiCo2O4/NiCo2S4hybrid nanostructures on Ni-foam were successfully fabricated by a facile pH-controlled ammonia evaporation technique.

2015 ◽  
Vol 3 (5) ◽  
pp. 1953-1960 ◽  
Author(s):  
Lingjie Li ◽  
Jing Xu ◽  
Jinglei Lei ◽  
Jie Zhang ◽  
Frank McLarnon ◽  
...  

The Ni(OH)2 hexagonal platelets were in situ fabricated on Ni foam as a binder-free supercapacitor electrode material with high performance and excellent cycling stability by a one-step, cost-effective, green hydrothermal treatment of three-dimensional (3D) Ni foam in a 15 wt% H2O2 aqueous solution.


2020 ◽  
Vol 345 ◽  
pp. 136260 ◽  
Author(s):  
Hongsheng Li ◽  
Haicheng Xuan ◽  
Yayu Guan ◽  
Guohong Zhang ◽  
Rui Wang ◽  
...  

2021 ◽  
Author(s):  
Haibin Sun ◽  
Shuang-Shuang Liang ◽  
Zijun Xu ◽  
Wenrui Zheng ◽  
Xiaoyu Liu ◽  
...  

Abstract We successfully designed and prepared hierarchical Ni3S2 nanosheet@nanorod arrays on three-dimensional Ni foam via facile hydrothermal sulfuration. We conducted a series of time- and temperature-dependent experiments to determine the Ostwald ripening process of hierarchical Ni3S2 nanosheet@nanorod arrays. The rationally hierarchical architecture creates an excellent supercapacitor electrode for Ni3S2 nanosheet@nanorod arrays. The areal capacitance of this array reaches 5.5 F cm-2 at 2 mA cm-2, which is much higher than that of Ni3S2 nanosheet arrays (1.5 F cm-2). The corresponding asymmetric supercapacitor exhibits a wide potential window of 1.6 V and energy density up to 1.0 Wh cm-2 when the proposed array is utilized as the positive electrode with activated carbon as the negative electrode. This electrochemical performance enhancement is attributable to the hierarchical structure and synergistic cooperation of macroporous Ni foam and well-aligned Ni3S2 nanosheet@nanorod arrays. Our results represent a promising approach to the preparation of hierarchical nanosheet@nanorod arrays as high-performing electrochemical capacitors.


2021 ◽  
Vol 16 (6) ◽  
pp. 1005-1010
Author(s):  
Jian Wang ◽  
Yan Zhao ◽  
Yucai Li ◽  
Shiwei Song

The electrochemical performance of the material depends heavily on the morphologies and structural characteristics of the material. Co3O4 samples show the remarkable electrochemical performance owing to the high porosity, appropriate pore size distribution and novel architecture and the effect of NH4F for morphology. Co3O4 nanowires grown on Ni foam have been synthesized through a facile hydrothermal approach, revealing large capacitance of 2178.4 mF cm−2 at the current density of 2 mA cm−2 and superior cycling stability.


2021 ◽  
Author(s):  
yajun JI ◽  
Fei Chen ◽  
Shufen Tan ◽  
Fuyong Ren

Abstract Transition metal oxides are generally designed as hybrid nanostructures with high performance for supercapacitors by enjoying the advantages of various electroactive materials. In this paper, a convenient and efficient route had been proposed to prepare hierarchical coral-like MnCo2O4.5@Co-Ni LDH composites on Ni foam, in which MnCo2O4.5 nanowires were enlaced with ultrathin Co-Ni layered double hydroxides nanosheets to achieve high capacity electrodes for supercapacitors. Due to the synergistic effect of shell Co-Ni LDH and core MnCo2O4.5, the outstanding electrochemical performance in three-electrode configuration was triggered (high area capacitance of 5.08 F/cm2 at 3 mA/cm2 and excellent rate capability of maintaining 61.69 % at 20 mA/cm2), which is superior to those of MnCo2O4.5, Co-Ni LDH and other metal oxides based composites reported. Meanwhile, the as-prepared hierarchical MnCo2O4.5@Co-Ni LDH electrode delivered improved electrical conductivity than that of pristine MnCo2O4.5. Furthermore, the as-constructed asymmetric supercapacitor using MnCo2O4.5@Co-Ni LDH as positive and activated carbon as negative electrode presented a rather high energy density of 220 μWh/cm2 at 2400 μW/cm2 and extraordinary cycling durability with the 100.0 % capacitance retention over 8000 cycles at 20 mA/cm2, demonstrating the best electrochemical performance compared to other asymmetric supercapacitors using metal oxides based composites as positive electrode material. It can be expected that the obtained MnCo2O4.5@Co-Ni LDH could be used as the high performance and cost-effective electrode in supercapacitors.


Nanoscale ◽  
2019 ◽  
Vol 11 (28) ◽  
pp. 13639-13649 ◽  
Author(s):  
Pengxi Li ◽  
Chaohui Ruan ◽  
Jing Xu ◽  
Yibing Xie

A three-dimensional criss-crossed ZnMoO4/CoO nanohybrid was synthesized to deliver high energy storage performance.


Sign in / Sign up

Export Citation Format

Share Document