“Green” nano-filters: fine nanofibers of natural protein for high efficiency filtration of particulate pollutants and toxic gases

RSC Advances ◽  
2016 ◽  
Vol 6 (107) ◽  
pp. 105948-105956 ◽  
Author(s):  
Hamid Souzandeh ◽  
Yu Wang ◽  
Wei-Hong Zhong

By combining the significant properties of nanofibers and the multi-functionality of pure proteins, “green” multifunctional air-filters with high removal efficiency of particulates and toxic gases is achieved.

2021 ◽  
Vol 09 (02) ◽  
pp. E278-E279
Author(s):  
Hiroyuki Fujimura ◽  
Jun Nishikawa ◽  
Takeshi Okamoto ◽  
Atsushi Goto ◽  
Koichi Hamabe ◽  
...  

1998 ◽  
Vol 3 (2) ◽  
pp. 65-78 ◽  
Author(s):  
Gwangpyo Ko ◽  
Harriet A. Burge ◽  
Michael Muilenberg ◽  
Stephen Rudnick ◽  
Melvin First

Mycobacterium tuberculosis (MTB) is transmitted through the air, and can be captured on ventilation air filters. People handling these filters may be exposed to infectious material. We studied the survival of strains of Mycobacterium on high efficiency particulate air (HEPA) filter material. We used a model ventilation system to evaluate survival over time of Mycobacterium chelonae and H37Ra (an avirulent stain of MTB) aerosolized and then captured on HEPA filter material. Survival curves for M. chelonae incubated at 55% and 75% RH under static conditions were not different with less than 4% survival at 24 hours. H37Ra was subjected to continuous airflow at the design airflow for the filter material following deposition on the HEPA filter material, and less than 0.1% of cells survived to 48 hours (RH not controlled). H37Ra was resistant to immobilized biocide (trimethoxysilylpropyl dimethyloctadecyl ammonium chloride) on HEPA filter material as well as the same biocide in solution. Finally, survival of H37Ra and virulent MTB strain (H37Rv) were not different following deposition onto HEPA filter material from liquid suspension and incubation under static conditions.


1990 ◽  
Vol 92 (1) ◽  
pp. 11-29
Author(s):  
Volker Rüdinger ◽  
Craig I. Ricketts ◽  
Jürgen G. Wilhelm

2017 ◽  
Vol 76 (6) ◽  
pp. 1466-1473 ◽  
Author(s):  
M. H. Salmani ◽  
M. Mokhtari ◽  
Z. Raeisi ◽  
M. H. Ehrampoush ◽  
H. A. Sadeghian

Wastewater containing pharmaceutical residual components must be treated before being discharged to the environment. This study was conducted to investigate the efficiency of tungsten-carbon nanocomposite in diclofenac removal using design of experiment (DOE). The 27 batch adsorption experiments were done by choosing three effective parameters (pH, adsorbent dose, and initial concentration) at three levels. The nanocomposite was prepared by tungsten oxide and activated carbon powder in a ratio of 1 to 4 mass. The remaining concentration of diclofenac was measured by a spectrometer with adding reagents of 2, 2′-bipyridine, and ferric chloride. Analysis of variance (ANOVA) was applied to determine the main and interaction effects. The equilibrium time for removal process was determined as 30 min. It was observed that the pH had the lowest influence on the removal efficiency of diclofenac. Nanocomposite gave a high removal at low concentration of 5.0 mg/L. The maximum removal for an initial concentration of 5.0 mg/L was 88.0% at contact time of 30 min. The results of ANOVA showed that adsorbent mass was among the most effective variables. Using DOE as an efficient method revealed that tungsten-carbon nanocomposite has high efficiency in the removal of residual diclofenac from the aqueous solution.


2018 ◽  
Vol 78 (6) ◽  
pp. 1260-1267 ◽  
Author(s):  
Mohammad Malakootian ◽  
Mohammad Reza Heidari

Abstract Phenol and its derivatives are available in various industries such as refineries, coking plants, steel mills, drugs, pesticides, paints, plastics, explosives and herbicides industries. This substance is carcinogenic and highly toxic to humans. The purpose of the study was to investigate the removal of phenol from wastewater of the steel industry using the electrocoagulation–photo-Fenton (EC-PF) process. Phenol and chemical oxygen demand (COD) removal efficiency were investigated using the parameters pH, Fe2+/H2O2, reaction time and current density. The highest removal efficiency rates of phenol and COD were 100 and 98%, respectively, for real wastewater under optimal conditions of pH = 4, current density = 1.5 mA/cm2, Fe2+/H2O2 = 1.5 and reaction time of 25 min. Combination of the two effective methods for the removal of phenol and COD, photocatalytic electrocoagulation photo-Fenton process is a suitable alternative for the removal of organic pollutants in industry wastewater because of the low consumption of chemicals, absence of sludge and other side products, and its high efficiency.


Sign in / Sign up

Export Citation Format

Share Document