scholarly journals Pressure-induced amorphization in the nanoindentation of single crystalline silicon

RSC Advances ◽  
2017 ◽  
Vol 7 (3) ◽  
pp. 1357-1362 ◽  
Author(s):  
Jing Han ◽  
Song Xu ◽  
Jiapeng Sun ◽  
Liang Fang ◽  
Hua Zhu

Large-scale molecular dynamics simulations of nanoindentation on a (100) oriented silicon surface were performed to investigate the mechanical behavior and phase transformation of single crystalline silicon.

2016 ◽  
Vol 34 (4) ◽  
pp. 041509 ◽  
Author(s):  
Daniel Edström ◽  
Davide G. Sangiovanni ◽  
Lars Hultman ◽  
Ivan Petrov ◽  
J. E. Greene ◽  
...  

1995 ◽  
Vol 396 ◽  
Author(s):  
M. tang ◽  
L. colombo ◽  
T. Diaz De La Rubia

AbstractTight-binding molecular dynamics (TBMD) simulations are performed (i) to evaluate the formation and binding energies of point defects and defect clusters, (ii) to compute the diffusivity of self-interstitial and vacancy in crystalline silicon, and (iii) to characterize the diffusion path and mechanism at the atomistic level. In addition, the interaction between individual defects and their clustering is investigated.


Nano Letters ◽  
2017 ◽  
Vol 17 (10) ◽  
pp. 5919-5924 ◽  
Author(s):  
Zheyong Fan ◽  
Petri Hirvonen ◽  
Luiz Felipe C. Pereira ◽  
Mikko M. Ervasti ◽  
Ken R. Elder ◽  
...  

2017 ◽  
pp. 141-177 ◽  
Author(s):  
Stefan J. Eder ◽  
Ulrike Cihak-Bayr ◽  
Davide Bianchi

Sign in / Sign up

Export Citation Format

Share Document