glass interface
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 21)

H-INDEX

21
(FIVE YEARS 2)

Author(s):  
Prabhodh S. Abbineni ◽  
Joseph S. Briguglio ◽  
Edwin R. Chapman ◽  
Ronald W. Holz ◽  
Daniel Axelrod

Granule-plasma membrane docking and fusion can only occur when proteins that enable these reactions are present at the granule-plasma membrane contact. Thus, the mobility of granule membrane proteins may influence docking, and membrane fusion. We measured the mobility of vesicle associated membrane protein 2 (VAMP2), synaptotagmin 1 (Syt1), and synaptotagmin 7 (Syt7) in chromaffin granule membranes in living chromaffin cells. We used a method that is not limited by standard optical resolution. A bright flash of strongly decaying evanescent field produced by total internal reflection (TIR) was used to photobleach GFP-labeled proteins in the granule membrane. Fluorescence recovery occurs as unbleached protein in the granule membrane distal from the glass interface diffuses into the more bleached proximal regions, enabling the measurement of diffusion coefficients. We found that VAMP2-EGFP and Syt7-EGFP are mobile with a diffusion coefficient of approximately 3 × 10-10 cm2/s. Syt1-EGFP mobility was below the detection limit. Utilizing these diffusion parameters, we estimated the time required for these proteins to arrive at docking and nascent fusion sites to be many tens of milliseconds. Our analyses raise the possibility that the diffusion characteristics of VAMP2 and Syt proteins could be a factor that influences the rate of exocytosis.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1481
Author(s):  
Wenbo Li ◽  
Chenghao Xu ◽  
Ameng Xie ◽  
Ken Chen ◽  
Yingfei Yang ◽  
...  

Interfacial reaction between quartz and potassium silicate glass was studied at both 900 °C and 1000 °C. The results showed that no phase transformation was observed for the pure quartz at 900 °C or 1000 °C. Instead, for quartz particles in K2O-SiO2 glass, the transformation from quartz to cristobalite occurred at the quartz/glass interface at first, and then the cristobalite crystals transformed into tridymite. The tridymite formed at the interface between particles and glass became the site of heterogeneous nucleation, which induces plenty of tridymite precipitation in potassium silicate glass. The influential mechanism of firing temperature and size of quartz particles on transformation rate was discussed.


Author(s):  
Dake Zhao ◽  
Dongjiang Wu ◽  
Jing Shi ◽  
Fangyong Niu ◽  
Guangyi Ma

AbstractMelt-grown alumina-based composites are receiving increasing attention due to their potential for aerospace applications; however, the rapid preparation of high-performance components remains a challenge. Herein, a novel route for 3D printing dense (< 99.4%) high-performance melt-grown alumina-mullite/glass composites using directed laser deposition (DLD) is proposed. Key issues on the composites, including phase composition, microstructure formation/evolution, densification, and mechanical properties, are systematically investigated. The toughening and strengthening mechanisms are analyzed using classical fracture mechanics, Griffith strength theory, and solid/glass interface infiltration theory. It is demonstrated that the composites are composed of corundum, mullite, and glass, or corundum and glass. With the increase of alumina content in the initial powder, corundum grains gradually evolve from near-equiaxed dendrite to columnar dendrite and cellular structures due to the weakening of constitutional undercooling and small nucleation undercooling. The microhardness and fracture toughness are the highest at 92.5 mol% alumina, with 18.39±0.38 GPa and 3.07±0.13 MPa·m1/2, respectively. The maximum strength is 310.1±36.5 MPa at 95 mol% alumina. Strength enhancement is attributed to the improved densification due to the trace silica doping and the relief of residual stresses. The method unravels the potential of preparing dense high-performance melt-grown alumina-based composites by the DLD technology.


2021 ◽  
Vol 44 (7) ◽  
Author(s):  
A. Gong ◽  
S. Rode ◽  
G. Gompper ◽  
U. B. Kaupp ◽  
J. Elgeti ◽  
...  

Abstract  The eukaryotic flagellum propels sperm cells and simultaneously detects physical and chemical cues that modulate the waveform of the flagellar beat. Most previous studies have characterized the flagellar beat and swimming trajectories in two space dimensions (2D) at a water/glass interface. Here, using refined holographic imaging methods, we report high-quality recordings of three-dimensional (3D) flagellar bending waves. As predicted by theory, we observed that an asymmetric and planar flagellar beat results in a circular swimming path, whereas a symmetric and non-planar flagellar beat results in a twisted-ribbon swimming path. During swimming in 3D, human sperm flagella exhibit torsion waves characterized by maxima at the low curvature regions of the flagellar wave. We suggest that these torsion waves are common in nature and that they are an intrinsic property of beating axonemes. We discuss how 3D beat patterns result in twisted-ribbon swimming paths. This study provides new insight into the axoneme dynamics, the 3D flagellar beat, and the resulting swimming behavior. Graphic abstract


2021 ◽  
Vol 12 (4) ◽  
pp. 2186
Author(s):  
Nikita Vladimirov ◽  
Friedrich Preusser ◽  
Jan Wisniewski ◽  
Ziv Yaniv ◽  
Ravi Anand Desai ◽  
...  

2021 ◽  
Vol 206 ◽  
pp. 108534
Author(s):  
Xing Quan Wang ◽  
Wei Jian ◽  
Oral Buyukozturk ◽  
Christopher K.Y. Leung ◽  
Denvid Lau

2020 ◽  
Vol 124 (18) ◽  
pp. 10032-10044 ◽  
Author(s):  
Magaly Tribet ◽  
Anamul H. Mir ◽  
Célia Gillet ◽  
Christophe Jegou ◽  
Sarah Mougnaud ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document