bimodal grain size
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 25)

H-INDEX

25
(FIVE YEARS 3)

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 787
Author(s):  
Jaroslav Čapek ◽  
Lukáš Kadeřávek ◽  
Jan Pinc ◽  
Jaromír Kopeček ◽  
Ladislav Klimša

In this study, we prepared zinc wires with a diameter of 250 µm by direct extrusion using an extrusion ratio of 576. We studied the influence of the extrusion temperature and microstructure of the initial Zn billets on the microstructural and mechanical characteristics of the extruded wires. The extrusion temperature played a significant role in the final grain size. The wires extruded at 300 °C possessed a coarse-grained microstructure and the shape of their tensile stress–strain curves suggested that twinning played an important role during their deformation. A significant influence of the initial grain size on the final microstructure was observed after the extrusion at 100 °C. The wires prepared from the billet with a very coarse-grained microstructure possessed a bimodal grain size. A significant coarsening of their microstructure was observed after the tensile test. The wires prepared from the medium-grained billets at 100 °C were relatively coarse-grained, but their grain size was stable during the straining, resulting in the highest ultimate tensile strength. This preliminary study shows that strong attention should be paid to the extrusion parameters and the microstructure of the initial billets, because they significantly influence the microstructure and mechanical behavior of the obtained wires.


Author(s):  
Anna Dobkowska ◽  
Boguslawa Adamczyk – Cieślak ◽  
Dariusz Kuc ◽  
Eugeniusz Hadasik ◽  
Tomasz Płociński ◽  
...  

Author(s):  
Ting Zhao ◽  
Mei-Mei Lian ◽  
Yi Qin ◽  
Jian-Feng Zhu ◽  
Xin-Gang Kong ◽  
...  

AbstractSelf-reinforced lithium disilicate (Li2Si2O5, LD) glass-ceramics were hot pressing sintered by introducing 5 wt% Li2Si2O5 crystal seeds into two different glass compositions of SiO2-Li2O-P2O5-ZrO2-Al2O3-K2O-La2O3 (7C LD) and SiO2-Li2O-K2O-La2O3 (4C LD). The results show that the seeds play an important role in the crystallization inducement, and microstructural and property improvement of the glass, especially for the glass powder without the nucleating agent of P2O5. The microstructure features a wider bimodal grain size distribution with large rod-like crystals epitaxially grown along the seeds and small crystals nucleated from the glass powder itself, contributing to the improvement of the performance especially the fracture toughness. The specimen of 4C LD glass with the addition of 5 wt% Li2Si2O5 seeds exhibited the best comprehensive properties with a good flexural strength (396±7 MPa), improved fracture toughness (3.31±0.19 MPa·m1/2), and comparable translucency as IPS e.max. This research provides a new idea and method for the improvement of the fracture toughness of lithium disilicate glass-ceramics without affecting its aesthetic appearance, and lays the foundation for its clinical applications.


Geology ◽  
2021 ◽  
Author(s):  
Guangfa Zhong ◽  
Xiaotong Peng

Manned submersible dives discovered plastic litter accumulations in a submarine canyon located in the northwestern South China Sea, ~150 km from the nearest coast. These plastic-dominated litter accumulations were mostly concentrated in two large scours in the steeper middle reach of the canyon. Plastic particles and fragments generally occurred on the upstreamfacing sides of large boulders and other topographic obstacles, indicating obstruction during down-valley transportation. Most of the litter accumulations were distributed in the up-valley dipping slopes downstream of the scour centers. This pattern is tentatively linked to turbidity currents, which accelerated down the steep upstream slopes of the scours and underwent a hydraulic jump toward the scour centers before decelerating on the upstream-facing flank. Associated seabed sediment consisted of clayey and sandy silts, with unimodal or bimodal grain-size distributions, which are typical for turbidites. The focused distribution of the litter accumulations is therefore linked to turbidity currents that episodically flush the canyon. Our findings provide evidence that litter dispersion in the deep sea may initially be governed by gravity flows, and that turbidity currents efficiently transfer plastic litter to the deeper ocean floor.


2021 ◽  
Author(s):  
Ting Zhao ◽  
Mei-Mei Lian ◽  
Yi Qin ◽  
Jian-Feng Zhu ◽  
Xin-Gang Kong ◽  
...  

Abstract Self-reinforced lithium disilicate (Li 2 Si 2 O 5 ) glass-ceramics were hot pressing sintered by introducing 5 wt% Li 2 Si 2 O 5 crystal seeds into two different glass systems. The results show that the seeds play an important role in the crystallization inducement, microstructural and properties improvement of the glass, especially for the glass powder without the nucleating agent of P 2 O 5 . The microstructure features a wider bimodal grain size distribution with large rod-like crystals epitaxially grown along the seeds and small crystals nucleated from the glass powder itself, contributes to the improvement of the performance especially the fracture toughness. The 4C5S specimen exhibited the best comprehensive properties with a good flexural strength (396 ± 7 MPa), improved fracture toughness (3.31 ± 0.19 MPa·m 1/2 ) and comparable translucency as IPS e.max. This research will provide a new idea and method for the perfect matching of the fracture toughness and the aesthetic appearance of lithium disilicate glass-ceramics, and lay the foundation for its clinical applications.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Fuan Wei ◽  
Jinhui Wang ◽  
Ping Li ◽  
Bo Shi

The mechanical properties of Mg-6Sn-3Al-1Zn alloy were enhanced with bimodal grain size disturbed in the microstructure uniformly; the Mg-6Sn-3Al-1Zn alloys were rolled with 60% thickness reduction at different rolling temperatures. The results have shown that the Mg-6Sn-3Al-1Zn alloys are composed of Mg2Sn phase and α-Mg matrix phase. When the rolling temperature was less than or equal to 400°C, with the rolling temperature increasing, the average size and volume fraction of Mg2Sn phase and the average grain size of small grains remained unchanged, the average grain size of large grains decreased, the volume fraction of small grains increased, and the yield strength of the alloy increased. When the rolling temperature reached 450°C, the average size and volume fraction of Mg2Sn phase and the average grain size of large grains increased, and the volume fraction of small grains and the yield strength of the alloy decreased. The elongation increased with the rolling temperature increasing, but the change trend of hardness was just opposite. When the alloy was rolled at 400°C, the average sizes of small grains, large grains, and Mg2Sn phases were 3.66 μm, 9.24 μm, and 19.5 μm, respectively. The volume fractions of small grains, large grains, and Mg2Sn phases were 18.6%, 77.6%, and 3.8%, respectively. And the tensile properties reached the optimum; for example, the tensile strength, yield strength, elongation, and Vickers hardness were 361 MPa, 289.5 MPa, 20.5%, and 76.3 HV, respectively.


Author(s):  
Vladimir A. Skripnyak ◽  
Evgeniya G. Skripnyak ◽  
Vladimir V. Skripnyak

AbstractA multi-scale computational approach was used for the investigation of a high strain rate deformation and fracture of magnesium and titanium alloys with a bimodal distribution of grain sizes under dynamic loading. The processes of inelastic deformation and damage of titanium alloys were investigated at the mesoscale level by the numerical simulation method. It was shown that localization of plastic deformation under tension at high strain rates depends on grain size distribution. The critical fracture stress of alloys depends on relative volumes of coarse grains in representative volume. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in ultra-fine grained partial volumes. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of a bimodal grain size distributions causes increased ductility, but decreased tensile strength of UFG alloys. The increase in fine precipitation concentration results not only strengthening but also an increase in ductility of UFG alloys with bimodal grain size distribution.


Sign in / Sign up

Export Citation Format

Share Document