scholarly journals High temperature ferromagnetism in π-conjugated two-dimensional metal–organic frameworks

2017 ◽  
Vol 8 (4) ◽  
pp. 2859-2867 ◽  
Author(s):  
Wenbin Li ◽  
Lei Sun ◽  
Jingshan Qi ◽  
Pablo Jarillo-Herrero ◽  
Mircea Dincă ◽  
...  

Simulations demonstrate the critical roles of π-conjugation and large magnetic anisotropy in realizing high-temperature ferromagnetic 2D metal–organic framework, which is also half-metallic.

Author(s):  
Jiajun Song ◽  
Jianzhong Zheng ◽  
Anneng Yang ◽  
Hong Liu ◽  
Zeyu Zhao ◽  
...  

Two-dimensional (2D) conductive metal-organic frameworks (MOFs) can not only inherit the high porosity and tailorability of traditional MOFs but also exhibit unique charge transport properties, offering promising opportunities for applications...


CrystEngComm ◽  
2021 ◽  
Author(s):  
Olaya Paz Gomez ◽  
Rosa Carballo ◽  
Ana Belen Lago ◽  
Ezequiel M. Vazquez-Lopez

Polymorphism is a common phenomenon in crystalline materials but it has barely been studied in the field of metal organic frameworks. The study of polymorphism is useful to investigate structure–property...


2020 ◽  
Vol 10 (12) ◽  
pp. 3897-3903 ◽  
Author(s):  
Chun Yang ◽  
Wen-Jing Cai ◽  
Bin-Bin Yu ◽  
Hong Qiu ◽  
Meng-Li Li ◽  
...  

We designed and synthesized a series of bimetallic and monometallic 2D metal–organic framework electrocatalysts with excellent stability, discussing their different electrochemical catalysts for oxygen evolution reaction (OER).


2020 ◽  
Vol 8 (39) ◽  
pp. 20386-20392
Author(s):  
Mengke Cai ◽  
Yawei Zhang ◽  
Yiyue Zhao ◽  
Qinglin Liu ◽  
Yinle Li ◽  
...  

2D metal–organic frameworks (MOFs) could promote biomass valorization, and electrooxidation of 5-(hydroxymethyl)furfural (HMF) into 2,5-furandicarboxylic acid (FDCA) with a highly efficient electrocatalytic performance.


Author(s):  
Jun Jin ◽  
You-fang Zhang ◽  
Huanwen Wang ◽  
Yansheng Gong ◽  
Rui Wang ◽  
...  

Recently, metal–organic frameworks (MOFs) have been used to synthesize electrode materials such as porous carbon, metal oxides, and metal chalcogenides or directly utilized as electrodes. However, pristine MOF electrodes suffer...


2020 ◽  
Vol 49 (32) ◽  
pp. 11073-11084
Author(s):  
Chunxia Tan ◽  
Guohua Liu ◽  
Haiyang Li ◽  
Yong Cui ◽  
Yan Liu

The metal–organic framework nanosheets (MONs) exhibits a balanced mix of crystallinity, flexibility, tunability, and high activity, which hold promising in addressing the shortcomings of metal–organic frameworks (MOFs) in heterogeneous catalysis.


CrystEngComm ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 60-64 ◽  
Author(s):  
Macguire R. Bryant ◽  
Timothy A. Ablott ◽  
Shane G. Telfer ◽  
Lujia Liu ◽  
Christopher Richardson

Direct radiative heating at 200 °C quantitatively converts sulfoxide-tags to desirable vinyl groups on a porous zinc(ii) metal–organic framework analogue of IRMOF-9.


RSC Advances ◽  
2015 ◽  
Vol 5 (56) ◽  
pp. 45213-45216 ◽  
Author(s):  
Shan-Shan Yu ◽  
Guo-Jun Yuan ◽  
Hai-Bao Duan

A 3D hydrogen-bonding metal–organic framework shows a low dielectric constant and relaxation dielectric behavior at high temperature.


Nanoscale ◽  
2020 ◽  
Vol 12 (16) ◽  
pp. 8969-8974 ◽  
Author(s):  
Qinghua Xia ◽  
Haimin Liu ◽  
Mengmeng Jin ◽  
Linfei Lai ◽  
Yongting Qiu ◽  
...  

CNT confined catalysts have been prepared by annealing of two-dimensional metal–organic framework (MOF) nanosheets under a H2/Ar atmosphere.


Author(s):  
AshokKumar Meiyazhagan

Abstract A few recent findings on ultrathin two-dimensional (2D) metal-organic frameworks (MOFs) were discussed in this spotlight review. MOFs are a class of materials with intriguing properties for possible applications in several fields ranging from catalysis to sensors and functional devices. To date, several synthesis strategies have been explored to derive crystalline 2D MOF structures. However, most synthetic strategies to obtain such materials remain underexplored. This highlighted review evaluated select synthesis strategies focused on deriving micron-sized 2D MOF crystals, emphasizing their rich chemistries. More importantly, the possibility of integrating the synthesized ultrathin 2D crystalline MOFs into the functional device and their electrical conductivity measurements are reviewed. Overall, this review provides the most recent outcomes in the ultrathin 2D MOF community and its influence on electronic devices.


Sign in / Sign up

Export Citation Format

Share Document