Hydrothermal synthesis of CuCo2O4/CuO nanowire arrays and RGO/Fe2O3 composites for high-performance aqueous asymmetric supercapacitors

2016 ◽  
Vol 4 (25) ◽  
pp. 9977-9985 ◽  
Author(s):  
Yidan Wang ◽  
Cheng Shen ◽  
Lengyuan Niu ◽  
Rongzhen Li ◽  
Huatong Guo ◽  
...  

A CuCo2O4/CuO//RGO/Fe2O3 asymmetric supercapacitor was fabricated and it delivered a high energy density of 33.0 W h kg−1.

2018 ◽  
Vol 6 (4) ◽  
pp. 1802-1808 ◽  
Author(s):  
Ke Li ◽  
Yanshan Huang ◽  
Jingjing Liu ◽  
Mansoor Sarfraz ◽  
Phillips O. Agboola ◽  
...  

Three-dimensional graphene frameworks enable the development of stretchable asymmetric supercapacitors with a record high energy density of 77.8 W h kg−1, and also excellent stretchability and superior cycling stability.


2016 ◽  
Vol 4 (2) ◽  
pp. 587-595 ◽  
Author(s):  
Sourav Bag ◽  
C. Retna Raj

Nanocrystalline mesoporous α-MnO2 is synthesized for the fabrication of a high energy density aqueous asymmetric supercapacitor device.


2016 ◽  
Vol 1 (2) ◽  
pp. 150-155 ◽  
Author(s):  
Ruizhi Li ◽  
Zhijun Lin ◽  
Xin Ba ◽  
Yuanyuan Li ◽  
Ruimin Ding ◽  
...  

An integrated (Cu,Ni)O mesoporous nanowire array that delivers a high specific capacitance has been used to construct high-performance aqueous asymmetric supercapacitors of (Cu,Ni)O(+)//AC(−).


2018 ◽  
Vol 6 (19) ◽  
pp. 9109-9115 ◽  
Author(s):  
Xiaoya Chang ◽  
Lei Zang ◽  
Song Liu ◽  
Mengying Wang ◽  
Huinan Guo ◽  
...  

Yolk–shell ZnCo2O4 with in situ formed carbon shows great potential for supercapacitors, which delivers high energy density and power density.


2019 ◽  
Vol 6 (8) ◽  
pp. 2061-2070 ◽  
Author(s):  
Jai Bhagwan ◽  
Bhimanaboina Ramulu ◽  
Jae Su Yu

The investigation of nanomaterials with improved energy storage performance is essential in the development of high energy density supercapacitors.


2015 ◽  
Vol 3 (31) ◽  
pp. 16150-16161 ◽  
Author(s):  
Dezhi Kong ◽  
Chuanwei Cheng ◽  
Ye Wang ◽  
Jen It Wong ◽  
Yaping Yang ◽  
...  

A novel asymmetric supercapacitor composed of Co3O4@C@Ni3S2 NNAs as the positive electrode and activated carbon (AC) as the negative electrode can deliver a high energy density and excellent long cycle stability.


Sign in / Sign up

Export Citation Format

Share Document