Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage devices

2017 ◽  
Vol 5 (5) ◽  
pp. 2204-2214 ◽  
Author(s):  
Enchao Hao ◽  
Wei Liu ◽  
Shuang Liu ◽  
Yuan Zhang ◽  
Huanlei Wang ◽  
...  

Based on the unique multilayered structure of ginkgo leaves, interconnected carbon nanosheets with rich micro/meso pores have been fabricated, showing excellent electrochemical performance in multiple energy storage devices.

Author(s):  
Kunfang Wang ◽  
Fei Sun ◽  
Yanlin Su ◽  
Yingquan Chen ◽  
Jihui Gao ◽  
...  

Sodium-ion capacitors (SICs) combine the advantages of sodium-ion batteries and supercapacitors and have been regarded as one of the promising electrochemical energy storage devices. However, the electrochemical performance of SICs...


2020 ◽  
Author(s):  
Yamin Zhang ◽  
Zhongpu Wang ◽  
Deping Li ◽  
Qing Sun ◽  
Kangrong Lai ◽  
...  

<p></p><p>Porous carbon has attracted extensive attentions as the electrode material for various energy storage devices considering its advantages like high theoretical capacitance/capacity, high conductivity, low cost and earth abundant inherence. However, there still exists some disadvantages limiting its further applications, such as the tedious fabrication process, limited metal-ion transport kinetics and undesired structure deformation at harsh electrochemical conditions. Herein, we report a facile strategy, with calcium gluconate firstly reported as the carbon source, to fabricate ultrathin porous carbon nanosheets. <a>The as-prepared Ca-900 electrode delivers excellent K-ion storage performance including high reversible capacity (430.7 mAh g<sup>-1</sup>), superior rate capability (154.8 mAh g<sup>-1</sup> at an ultrahigh current density of 5.0 A g<sup>-1</sup>) and ultra-stable long-term cycling stability (a high capacity retention ratio of ~81.2% after 4000 cycles at 1.0 A g<sup>-1</sup>). </a>Similarly, when being applied in Zn-ion capacitors, the Ca-900 electrode also exhibits an ultra-stable cycling performance with ~90.9% capacity retention after 4000 cycles at 1.0 A g<sup>-1</sup>, illuminating the applicable potentials. Moreover, the origin of the fast and smooth metal-ion storage is also revealed by carefully designed consecutive CV measurements. Overall, considering the facile preparation strategy, unique structure, application flexibility and in-depth mechanism investigations, this work will deepen the fundamental understandings and boost the commercialization of high-efficient energy storage devices like potassium-ion/sodium-ion batteries, zinc-ion batteries/capacitors and aluminum-ion batteries.</p><br><p></p>


Author(s):  
Xiaoqin Li ◽  
Xiaojuan Chen ◽  
Zhaoyu Jin ◽  
Panpan Li ◽  
Dan Xiao

Conductive polymers endow fiber-shaped electrodes and devices with excellent mechanical and electrochemical performance for energy storage in future wearable electronics.


2015 ◽  
Vol 17 (3) ◽  
pp. 1668-1674 ◽  
Author(s):  
Guiyin Xu ◽  
Jinpeng Han ◽  
Bing Ding ◽  
Ping Nie ◽  
Jin Pan ◽  
...  

Biomass-derived porous carbon material with sulfur and nitrogen dual-doping exhibits great potential for energy storage devices.


2018 ◽  
Vol 2 (2) ◽  
pp. 381-391 ◽  
Author(s):  
Yongpeng Cui ◽  
Huanlei Wang ◽  
Xiaonan Xu ◽  
Yan Lv ◽  
Jing Shi ◽  
...  

N-Doped carbon nanomaterials can be easily synthesized by a one-step carbonization/activation method, which can achieve excellent electrochemical performance for multiple energy storage.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Fei Liu ◽  
Chul Wee Lee ◽  
Ji Sun Im

Because of their unique 2D structure and numerous fascinating properties, graphene-based materials have attracted particular attention for their potential applications in energy storage devices. In this review paper, we focus on the latest work regarding the development of electrode materials for batteries and supercapacitors from graphene and graphene-based carbon materials. To begin, the advantages of graphene as an electrode material and the existing problems facing its use in this application will be discussed. The next several sections deal with three different methods for improving the energy storage performance of graphene: the restacking of the nanosheets, the doping of graphene with other elements, and the creation of defects on graphene planes. State-of-the-art work is reviewed. Finally, the prospects and further developments in the field of graphene-based materials for electrochemical energy storage are discussed.


2020 ◽  
Author(s):  
Yamin Zhang ◽  
Zhongpu Wang ◽  
Deping Li ◽  
Qing Sun ◽  
Kangrong Lai ◽  
...  

<p></p><p>Porous carbon has attracted extensive attentions as the electrode material for various energy storage devices considering its advantages like high theoretical capacitance/capacity, high conductivity, low cost and earth abundant inherence. However, there still exists some disadvantages limiting its further applications, such as the tedious fabrication process, limited metal-ion transport kinetics and undesired structure deformation at harsh electrochemical conditions. Herein, we report a facile strategy, with calcium gluconate firstly reported as the carbon source, to fabricate ultrathin porous carbon nanosheets. <a>The as-prepared Ca-900 electrode delivers excellent K-ion storage performance including high reversible capacity (430.7 mAh g<sup>-1</sup>), superior rate capability (154.8 mAh g<sup>-1</sup> at an ultrahigh current density of 5.0 A g<sup>-1</sup>) and ultra-stable long-term cycling stability (a high capacity retention ratio of ~81.2% after 4000 cycles at 1.0 A g<sup>-1</sup>). </a>Similarly, when being applied in Zn-ion capacitors, the Ca-900 electrode also exhibits an ultra-stable cycling performance with ~90.9% capacity retention after 4000 cycles at 1.0 A g<sup>-1</sup>, illuminating the applicable potentials. Moreover, the origin of the fast and smooth metal-ion storage is also revealed by carefully designed consecutive CV measurements. Overall, considering the facile preparation strategy, unique structure, application flexibility and in-depth mechanism investigations, this work will deepen the fundamental understandings and boost the commercialization of high-efficient energy storage devices like potassium-ion/sodium-ion batteries, zinc-ion batteries/capacitors and aluminum-ion batteries.</p><br><p></p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hongfang Ma ◽  
Zhanghao Chen ◽  
Xiang Gao ◽  
Wenfei Liu ◽  
Hanfei Zhu

AbstractPorous carbon are excellent electrode materials for energy-storage devices. Here, we present a facile in-situ reduction method to improve the electrochemical performance of carbon materials by gold nanoparticles. The prepared porous carbon microspheres decorated with gold-nanoparticle had a 3D honeycomb-like structure with a high specific surface area of about 1635 m2 g−1, confirmed by scanning electron microscopy, transmission electron microscopy, and the Brunauer-Emmett-Teller method. The electrochemical performance of as-synthesized porous carbon microspheres was exemplified as electrode materials for supercapacitor with a high specific capacitance of 440 F g−1 at a current density of 0.5 A g−1, and excellent cycling stability with a capacitance retention of 100% after 2000 cycles at 10 A g−1 in 6 M KOH electrolyte. Our method opened a new direction for the gold-nanoparticle-decorated synthesis of porous carbon microspheres and could be further applied to synthesize porous carbon microspheres with various nanoparticle decorations for numerous applications as energy storage devices, enhanced absorption materials, and catalytical sites.


2020 ◽  
Author(s):  
Yamin Zhang ◽  
Zhongpu Wang ◽  
Deping Li ◽  
Qing Sun ◽  
Kangrong Lai ◽  
...  

<p>Porous carbon has attracted extensive attentions as the electrode material for various energy storage devices considering its advantages like high theoretical capacitance/capacity, high conductivity, low cost and earth abundant inherence. However, there still exists some disadvantages limiting its further applications, such as the tedious fabrication process, limited metal-ion transport kinetics and undesired structure deformation at harsh electrochemical conditions. Herein, we report a facile strategy, with calcium gluconate firstly reported as the carbon source, to fabricate ultrathin porous carbon nanosheets. <a>The as-prepared Ca-900 electrode delivers excellent K-ion storage performance including high reversible capacity (497.7 mAh g<sup>-1</sup>), superior rate capability (154.8 mAh g<sup>-1</sup> at an ultrahigh current density of 5.0 A g<sup>-1</sup>) and ultra-stable long-term cycling stability (a high capacity retention ratio of ~72.4% after 4000 cycles at 1.0 A g<sup>-1</sup>). </a>Similarly, when being applied in Zn-ion capacitors, the Ca-900 electrode also exhibits an ultra-stable cycling performance with ~90.9% capacity retention after 4000 cycles at 1.0 A g<sup>-1</sup>, illuminating the applicable potentials. Moreover, the origin of the fast and smooth metal-ion storage is also revealed by carefully designed consecutive CV measurements. Overall, considering the facile preparation strategy, unique structure, application flexibility and in-depth mechanism investigations, this work will deepen the fundamental understandings and boost the commercialization of high-efficient energy storage devices like potassium-ion/sodium-ion batteries, zinc-ion batteries/capacitors and aluminum-ion batteries.</p>


Sign in / Sign up

Export Citation Format

Share Document