Plasmonic nanocone arrays for rapid and detailed cell lysate surface enhanced Raman spectroscopy analysis

The Analyst ◽  
2017 ◽  
Vol 142 (23) ◽  
pp. 4422-4430 ◽  
Author(s):  
L. P. Hackett ◽  
L. L. Goddard ◽  
G. L. Liu

A plasmonic nanocone SERS substrate with a uniform enhancement factor is developed and applied for cell lysate studies.

2019 ◽  
Vol 74 (2) ◽  
pp. 168-177 ◽  
Author(s):  
Awatef Ouhibi ◽  
Maroua Saadaoui ◽  
Nathalie Lorrain ◽  
Mohammed Guendouz ◽  
Noureddine Raouafi ◽  
...  

In this work, we combined a hierarchical nano-array effect of silicon nanowires (SiNWs) with a metallic surface of silver nanoparticles (AgNPs) to design a surface-enhanced Raman spectroscopy (SERS) scattering substrate for sensitive detection of Rhodamine 6G (R6G) which is a typical dye for fluorescence probes. The SiNWs were prepared by Metal-Assisted Chemical Etching (MACE) of n-Si (100) wafers. The Doehlert design methodology was used for planning the experiment and analyzing the experimental results. Thanks to this methodology, the R6G SERS response has been optimized by studying the effects of the silver nitrate concentration, silver nitrate and R6G immersion times and their interactions. The immersion time in R6G solution stands out as the most of influential factor on the SERS response.


Nanoscale ◽  
2018 ◽  
Vol 10 (13) ◽  
pp. 5897-5905 ◽  
Author(s):  
Zhen Li ◽  
Shouzhen Jiang ◽  
Yanyan Huo ◽  
Tingyin Ning ◽  
Aihua Liu ◽  
...  

We explore the variation of SERS performance towards two different Ag NP layers using multilayer GO as a spacer.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nan Chen ◽  
Ting-Hui Xiao ◽  
Zhenyi Luo ◽  
Yasutaka Kitahama ◽  
Kotaro Hiramatsu ◽  
...  

Abstract Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for vibrational spectroscopy as it provides several orders of magnitude higher sensitivity than inherently weak spontaneous Raman scattering by exciting localized surface plasmon resonance (LSPR) on metal substrates. However, SERS can be unreliable for biomedical use since it sacrifices reproducibility, uniformity, biocompatibility, and durability due to its strong dependence on “hot spots”, large photothermal heat generation, and easy oxidization. Here, we demonstrate the design, fabrication, and use of a metal-free (i.e., LSPR-free), topologically tailored nanostructure composed of porous carbon nanowires in an array as a SERS substrate to overcome all these problems. Specifically, it offers not only high signal enhancement (~106) due to its strong broadband charge-transfer resonance, but also extraordinarily high reproducibility due to the absence of hot spots, high durability due to no oxidization, and high compatibility to biomolecules due to its fluorescence quenching capability.


The Analyst ◽  
2020 ◽  
Vol 145 (19) ◽  
pp. 6334-6341 ◽  
Author(s):  
Vered Heleg-Shabtai ◽  
Hagai Sharabi ◽  
Amalia Zaltsman ◽  
Izhar Ron ◽  
Alexander Pevzner

A sensitive surface-enhanced Raman spectroscopy (SERS) substrate was developed to enable hand-held Raman spectrometers to detect gas-phase VX and HD.


Sign in / Sign up

Export Citation Format

Share Document