Safer lithium–sulfur battery based on nonflammable electrolyte with sulfur composite cathode

2018 ◽  
Vol 54 (33) ◽  
pp. 4132-4135 ◽  
Author(s):  
Huijun Yang ◽  
Qinyu Li ◽  
Cheng Guo ◽  
Ahmad Naveed ◽  
Jun Yang ◽  
...  

Nonflammable solvent triethyl phosphate (TEP) is firstly used as co-solvent in Li–S batteries to satisfy the demand for safety and electrochemical performance.

2021 ◽  
Vol 8 ◽  
Author(s):  
Cheng Liu ◽  
Meng Xiang ◽  
Haiyang Zhang ◽  
Shuaiqiang Feng ◽  
Jianrong Xiao ◽  
...  

Lithium–sulfur battery hasreceived widespread attention because of its high energy density, low cost, environmental friendliness, and nontoxicity. However, the insulating properties of elemental sulfur, huge volume changes, and dissolution of polysulfides in electrolytes that result in the shuttle effect, low sulfur utilization, and low rate performance seriously hinder the commercialization of lithium–sulfur batteries. In this work, a composite material of nitrogen-doped multiwalled carbon nanotubes and V2O5 was designed and fabricated to serve as the positive electrode of lithium–sulfur battery via the hydrothermal method. The positive electrode of the V2O5@N-CNTs composite material could reach an initial discharge specific capacity of 1,453 mAh g−1at a rate of 0.1C. Moreover, the composite material could maintain a discharge ratio of 538 mAh g−1 at a rate of 0.5C even after 200 charge and discharge cycles. After 400 cycles, the composite had a specific discharge capacity of 439 mAh g−1 at a rate of 1.0C. The excellent electrochemical performance of the V2O5@N-CNT/S composite cathode material was due to the fact that V2O5 contains oxygen ions and has a strong polarized surface. Furthermore, nitrogen doping changed the hybrid structure of carbon atoms and provided additional active sites, thereby improving the conductivity of the material itself and effectively inhibiting the dissolution and diffusion of polysulfides.


2020 ◽  
Vol 20 (3) ◽  
pp. 1578-1588
Author(s):  
Si-Huang Peng ◽  
Shan-Shan Yao ◽  
Si-Kang Xue ◽  
Xin-Ye Qian ◽  
Xiang-Qian Shen ◽  
...  

Polyacrylonitrile (PAN) precursors have been polymerized at different radical polymerization temperatures for preparing sulfurized-polyacrylonitrile (S-PAN) composite cathodes in rechargeable lithium sulfur battery. The physical properties of these composites have been investigated using X-ray diffraction, Fourier transform infrared spectrometry, Raman spectroscopy, Brunner-Emmet-Teller measurement and Gel permeation chromatography analysis. The electrochemical performance of the S-PAN composite cathodes made from the PAN precursor was investigated. The results showed that the molecular weight distribution of the PAN precursors affected the electrochemical performance of the S-PAN made from the PAN precursor. S-PAN composites derived from PAN with a narrower molecular weight distribution at 65 °C were exhibit the best electrochemical performance in lithium-sulfur battery.


2012 ◽  
Vol 202 ◽  
pp. 389-393 ◽  
Author(s):  
Kefei Li ◽  
Bei Wang ◽  
Dawei Su ◽  
Jinsoo Park ◽  
Hyojun Ahn ◽  
...  

2005 ◽  
Vol 486-487 ◽  
pp. 610-613 ◽  
Author(s):  
Jin Kyu Kim ◽  
Jae Won Choi ◽  
Yeon Hwa Kim ◽  
Jong Uk Kim ◽  
Jou Hyeon Ahn

The effect of mixed electrolytes and organic additives on the electrochemical performance of rechargeable lithium/sulfur battery is investigated. The mixture of organic electrolytes, DME, DIG, TEGDME, and DIOX, was prepared to have appropriate composition, and to the electrolyte were added various organic additives, such as toluene, γ-butyrolactone, and MA. They showed an improved cyclic efficiency of lithium/sulfur battery and made utilization of active material, sulfur, more effective.


Sign in / Sign up

Export Citation Format

Share Document