scholarly journals Characterizing the interplay of Pauli repulsion, electrostatics, dispersion and charge transfer in halogen bonding with energy decomposition analysis

2018 ◽  
Vol 20 (2) ◽  
pp. 905-915 ◽  
Author(s):  
Jonathan Thirman ◽  
Elric Engelage ◽  
Stefan M. Huber ◽  
Martin Head-Gordon

Variational energy decomposition analysis establishes charge-transfer as the origin of halogen bond strength differences that go against electrostatics.

2015 ◽  
Vol 44 (10) ◽  
pp. 3177-3211 ◽  
Author(s):  
Maximillian J. S. Phipps ◽  
Thomas Fox ◽  
Christofer S. Tautermann ◽  
Chris-Kriton Skylaris

The partitioning of the interaction energy into chemical components such as electrostatics, polarization, and charge transfer is possible with energy decomposition analysis approaches. We review and evaluate these for biomolecular applications.


2021 ◽  
Vol 72 (1) ◽  
pp. 641-666
Author(s):  
Yuezhi Mao ◽  
Matthias Loipersberger ◽  
Paul R. Horn ◽  
Akshaya Das ◽  
Omar Demerdash ◽  
...  

Quantum chemistry in the form of density functional theory (DFT) calculations is a powerful numerical experiment for predicting intermolecular interaction energies. However, no chemical insight is gained in this way beyond predictions of observables. Energy decomposition analysis (EDA) can quantitatively bridge this gap by providing values for the chemical drivers of the interactions, such as permanent electrostatics, Pauli repulsion, dispersion, and charge transfer. These energetic contributions are identified by performing DFT calculations with constraints that disable components of the interaction. This review describes the second-generation version of the absolutely localized molecular orbital EDA (ALMO-EDA-II). The effects of different physical contributions on changes in observables such as structure and vibrational frequencies upon complex formation are characterized via the adiabatic EDA. Example applications include red- versus blue-shifting hydrogen bonds; the bonding and frequency shifts of CO, N2, and BF bound to a [Ru(II)(NH3)5]2 + moiety; and the nature of the strongly bound complexes between pyridine and the benzene and naphthalene radical cations. Additionally, the use of ALMO-EDA-II to benchmark and guide the development of advanced force fields for molecular simulation is illustrated with the recent, very promising, MB-UCB potential.


Author(s):  
Sérgio Galembeck ◽  
Renato Orenha ◽  
Rafael Madeira ◽  
Letícia Peixoto ◽  
Renato Parreira

The interpretation of the distortions of the electron distribution in [2,2]cyclophanes (22-CPs) is controversial. Some studies indicate that there is an accumulation of electron density (ρ) outside the cavity of 22-CPs. The nature of through-space (ts) interaction is still under debate. The relative importance of ts and through-bond (tb) is an open question. In an attempt to clarify these points, we have investigated five 22-CPs and their corresponding toluene dimers by molecular orbitals analysis, electron density difference analysis, some topological analysis of ρ (quantum theory of atoms in molecules (QTAIM), electron localization function (ELF) and noncovalent interactions (NCI)), and energy decomposition analysis with natural orbitals for chemical valence (EDA-NOCV). ρ is concentrated inside the inter-ring region. All the analyses indicated that ts is predominant. The ts is composed by attractive dispersion and Pauli repulsion, with a small covalent contribution. Except for 1 and 6, all the compounds present inter-ring bond paths.


Sign in / Sign up

Export Citation Format

Share Document