Enhanced visible light harnessing and oxygen vacancy promoted N, S co-doped CeO2 nanoparticle: a challenging photocatalyst for Cr(vi) reduction

2017 ◽  
Vol 7 (13) ◽  
pp. 2772-2781 ◽  
Author(s):  
S. Mansingh ◽  
D. K. Padhi ◽  
K. M. Parida

Enhanced photocatalytic activity of N-, S-doped ceria nanoparticles towards Cr(vi) reduction under visible light irradiation.

2020 ◽  
Vol 35 (3) ◽  
pp. 312-320
Author(s):  
Zuowei Zhang ◽  
Hongshun Hao ◽  
Shanshan Jin ◽  
Yunxia Hou ◽  
Hongman Hou ◽  
...  

Abstract


2020 ◽  
Vol 46 (15) ◽  
pp. 24744-24752 ◽  
Author(s):  
Weichao Li ◽  
Linkun Xie ◽  
Liexing Zhou ◽  
Josias Ochoa-Lozano ◽  
Chen Li ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1332
Author(s):  
Duc Quang Dao ◽  
Thi Kim Anh Nguyen ◽  
Thanh-Truc Pham ◽  
Eun Woo Shin

Co-doped NiTiO3/g-C3N4 composite photocatalysts were prepared by a modified Pechini method to improve their photocatalytic activity toward methylene blue photodegradation under visible light irradiation. The combination of Co-doped NiTiO3 and g-C3N4 and Co-doping into the NiTiO3 lattice synergistically enhanced the photocatalytic performance of the composite photocatalysts. X-ray photoelectron spectroscopy results for the Co-doped NiTiO3/g-C3N4 composite photocatalysts confirmed Ti-N linkages between the Co-doped NiTiO3 and g-C3N4. In addition, characteristic X-ray diffraction peaks for the NiTiO3 lattice structure clearly indicated substitution of Co into the NiTiO3 lattice structure. The composite structure and Co-doping of the C-x composite photocatalysts (x wt % Co-doped NiTiO3/g-C3N4) not only decreased the emission intensity of the photoluminescence spectra but also the semicircle radius of the Nyquist plot in electrochemical impedance spectroscopy, giving the highest kapp value (7.15 × 10−3 min−1) for the C-1 composite photocatalyst.


2014 ◽  
Vol 1024 ◽  
pp. 368-371 ◽  
Author(s):  
Melody Kimi ◽  
Leny Yuliati ◽  
Mustaffa Shamsuddin

In and Ag co-doped ZnS photocatalysts were successfully prepared by hydrothermal method to extend the light absorption of ZnS to the visible light region. The concentration of In was constant while for Ag was varied to optimize the photocatalytic activity. The In and Ag co-doped ZnS photocatalysts showed smaller band gap energy compared to single doped In (0.1)-ZnS and undoped ZnS. The photocatalytic activity of In and Ag co-doped ZnS photocatalysts was evaluated from the amount of hydrogen produced. The hydrogen evolution rate from aqueous solution containing Na2SO3 and Na2S as sacrificial reagent under visible light irradiation obtained from In and Ag co-doped ZnS is higher compared to the single doped In (0.1)-ZnS when optimum amount of Ag dopant was added. The highest photocatalytic activity is observed for In (0.1),Ag (0.01)-ZnS with hydrogen production rate of 26.82 μmol/h. The higher performance of this photocatalyst is ascribed to the extended visible light absorption, efficient charge separation as well as improved electron transfer associated with synergistic effect of appropriate amount of In and Ag co-doped ZnS.


Sign in / Sign up

Export Citation Format

Share Document