A review of quantitative structure–property relationships for the fate of ionizable organic chemicals in water matrices and identification of knowledge gaps

2017 ◽  
Vol 19 (3) ◽  
pp. 221-246 ◽  
Author(s):  
Tom M. Nolte ◽  
Ad M. J. Ragas

QSPR prediction models for chemical fate and exposure are critically reviewed so that knowledge gaps may be filled in subsequent study.

2019 ◽  
Vol 97 (10) ◽  
pp. 1125-1132 ◽  
Author(s):  
Zahid Iqbal ◽  
Adnan Aslam ◽  
Muhammad Ishaq ◽  
Muhammad Aamir

In many applications and problems in material engineering and chemistry, it is valuable to know how irregular a given molecular structure is. Furthermore, measures of the irregularity of underlying molecular graphs could be helpful for quantitative structure property relationships and quantitative structure-activity relationships studies, and for determining and expressing chemical and physical properties, such as toxicity, resistance, and melting and boiling points. Here we explore the following three irregularity measures: the irregularity index by Albertson, the total irregularity, and the variance of vertex degrees. Using graph structural analysis and derivation, we compute the above-mentioned irregularity measures of several molecular graphs of nanotubes.


2017 ◽  
Vol 14 (7) ◽  
pp. 442 ◽  
Author(s):  
Tom M. Nolte ◽  
Willie J. G. M. Peijnenburg

Environmental contextTo aid the transition to sustainable chemistry there is a need to improve the degradability of chemicals and limit the use of organic solvents. Singlet oxygen, 1O2, is involved in organic synthesis and photochemical degradation; however, information on its aqueous-phase reactivity is limited. We developed cheminformatics models for photooxidation rate constants that will enable accurate assessment of aquatic photochemistry without experimentation. AbstractTo aid the transition to sustainable and green chemistry there is a general need to improve the degradability of chemicals and limit the use of organic solvents. In this study we developed quantitative structure–property relationships (QSPRs) for aqueous-phase photochemical reactions by singlet (a1Δg) oxygen. The bimolecular singlet oxygen reaction rate constant can be reliably estimated (R2 = 0.73 for naphtalenes and anthracenes, R2 = 0.86 for enes and R2 = 0.88 for aromatic amines) using the energy of the highest occupied molecular orbital (EHOMO). Additional molecular descriptors were used to characterise electronic and steric factors influencing the rate constant for aromatic enes (R2 = 0.74), sulfides and thiols (R2 = 0.72) and aliphatic amines. Mechanistic principles (frontier molecular orbital, perturbation and transition state theories) were applied to interpret the QSPRs developed and to corroborate findings in the literature. Depending on resonance, the speciation state (through protonation and deprotonation) can heavily influence the oxidation rate constant, which was accurately predicted. The QSPRs can be applied in synthetic photochemistry and for estimating chemical fate from photolysis or advanced water treatment.


Sign in / Sign up

Export Citation Format

Share Document