scholarly journals Structure-guided approach identifies a novel class of HIV-1 ribonuclease H inhibitors: binding mode insights through magnesium complexation and site-directed mutagenesis studies

MedChemComm ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 562-575 ◽  
Author(s):  
Vasanthanathan Poongavanam ◽  
Angela Corona ◽  
Casper Steinmann ◽  
Luigi Scipione ◽  
Nicole Grandi ◽  
...  

In silico methods identified a new class of inhibitors for HIV-1 RT RNase H and magnesium complexation study reveals the binding mode of these compounds.

2018 ◽  
Vol 20 (37) ◽  
pp. 23873-23884 ◽  
Author(s):  
Fengyuan Yang ◽  
Guoxun Zheng ◽  
Tingting Fu ◽  
Xiaofeng Li ◽  
Gao Tu ◽  
...  

The recently developed pyrrolyl diketo acid scaffold targeting both HIV-1 IN and RNase H is beneficial to counteract the failure of anti-HIV treatment due to drug resistance.


Virology ◽  
2014 ◽  
Vol 449 ◽  
pp. 82-87 ◽  
Author(s):  
Yusuke Matsui ◽  
Keisuke Shindo ◽  
Kayoko Nagata ◽  
Katsuhiro Io ◽  
Kohei Tada ◽  
...  

2010 ◽  
Vol 84 (15) ◽  
pp. 7625-7633 ◽  
Author(s):  
Hua-Poo Su ◽  
Youwei Yan ◽  
G. Sridhar Prasad ◽  
Robert F. Smith ◽  
Christopher L. Daniels ◽  
...  

ABSTRACT HIV/AIDS continues to be a menace to public health. Several drugs currently on the market have successfully improved the ability to manage the viral burden in infected patients. However, new drugs are needed to combat the rapid emergence of mutated forms of the virus that are resistant to existing therapies. Currently, approved drugs target three of the four major enzyme activities encoded by the virus that are critical to the HIV life cycle. Although a number of inhibitors of HIV RNase H activity have been reported, few inhibit by directly engaging the RNase H active site. Here, we describe structures of naphthyridinone-containing inhibitors bound to the RNase H active site. This class of compounds binds to the active site via two metal ions that are coordinated by catalytic site residues, D443, E478, D498, and D549. The directionality of the naphthyridinone pharmacophore is restricted by the ordering of D549 and H539 in the RNase H domain. In addition, one of the naphthyridinone-based compounds was found to bind at a second site close to the polymerase active site and non-nucleoside/nucleotide inhibitor sites in a metal-independent manner. Further characterization, using fluorescence-based thermal denaturation and a crystal structure of the isolated RNase H domain reveals that this compound can also bind the RNase H site and retains the metal-dependent binding mode of this class of molecules. These structures provide a means for structurally guided design of novel RNase H inhibitors.


Science ◽  
1988 ◽  
Vol 239 (4842) ◽  
pp. 910-913 ◽  
Author(s):  
M. Sadaie ◽  
T Benter ◽  
F Wong-Staal

2014 ◽  
Vol 58 (10) ◽  
pp. 6101-6110 ◽  
Author(s):  
Angela Corona ◽  
Francesco Saverio Di Leva ◽  
Sylvain Thierry ◽  
Luca Pescatori ◽  
Giuliana Cuzzucoli Crucitti ◽  
...  

ABSTRACTHIV-1 reverse transcriptase (RT)-associated RNase H activity is an essential function in viral genome retrotranscription. RNase H is a promising drug target for which no inhibitor is available for therapy. Diketo acid (DKA) derivatives are active site Mg2+-binding inhibitors of both HIV-1 RNase H and integrase (IN) activities. To investigate the DKA binding site of RNase H and the mechanism of action, six couples of ester and acid DKAs, derived from 6-[1-(4-fluorophenyl)methyl-1H-pyrrol-2-yl)]-2,4-dioxo-5-hexenoic acid ethyl ester (RDS1643), were synthesized and tested on both RNase H and IN functions. Most of the ester derivatives showed selectivity for HIV-1 RNase H versus IN, while acids inhibited both functions. Molecular modeling and site-directed mutagenesis studies on the RNase H domain demonstrated different binding poses for ester and acid DKAs and proved that DKAs interact with residues (R448, N474, Q475, Y501, and R557) involved not in the catalytic motif but in highly conserved portions of the RNase H primer grip motif. The ester derivative RDS1759 selectively inhibited RNase H activity and viral replication in the low micromolar range, making contacts with residues Q475, N474, and Y501. Quantitative PCR studies and fluorescence-activated cell sorting (FACS) analyses showed that RDS1759 selectively inhibited reverse transcription in cell-based assays. Overall, we provide the first demonstration that RNase H inhibition by DKAs is due not only to their chelating properties but also to specific interactions with highly conserved amino acid residues in the RNase H domain, leading to effective targeting of HIV retrotranscription in cells and hence offering important insights for the rational design of RNase H inhibitors.


Sign in / Sign up

Export Citation Format

Share Document