Advances in transferring chemical vapour deposition graphene: a review

2017 ◽  
Vol 4 (6) ◽  
pp. 1054-1063 ◽  
Author(s):  
Mingguang Chen ◽  
Robert C. Haddon ◽  
Ruoxue Yan ◽  
Elena Bekyarova

This review highlights recent developments in CVD graphene transfer methods from the perspective of mechanism, cleanness, quality, reliability, and cost.

2021 ◽  
Vol 2057 (1) ◽  
pp. 012121
Author(s):  
I A Kostogrud ◽  
E V Boyko ◽  
P E Matochkin ◽  
D V Sorokin

Abstract This paper presents a comparison of chemical and plasma electrolyte polishing methods for preparing a copper substrate for graphene synthesis by chemical vapour deposition. It is shown that in order to achieve the most uniform morphology of the surface of the copper substrate, it is preferable to use the electrolyte-plasma polishing method. With its help, the proportion of multilayer regions in the graphene coating obtained as a result of CVD synthesis decreases. The obtained results may serve a recommendation for creating a graphene coating with specified parameters.


RSC Advances ◽  
2014 ◽  
Vol 4 (46) ◽  
pp. 23952-23956 ◽  
Author(s):  
Adeline Huiling Loo ◽  
Adriano Ambrosi ◽  
Alessandra Bonanni ◽  
Martin Pumera

Herein, we aim to draw attention to employing chemical vapour deposition (CVD) method grown graphene as a potential platform for immunosensing of IgG.


1999 ◽  
Vol 09 (PR8) ◽  
pp. Pr8-395-Pr8-402 ◽  
Author(s):  
B. Armas ◽  
M. de Icaza Herrera ◽  
C. Combescure ◽  
F. Sibieude ◽  
D. Thenegal

1999 ◽  
Vol 09 (PR8) ◽  
pp. Pr8-373-Pr8-380 ◽  
Author(s):  
P. Sourdiaucourt ◽  
A. Derré ◽  
P. Delhaès ◽  
P. David

2020 ◽  
Author(s):  
Polla Rouf ◽  
Pitsiri Sukkaew ◽  
Lars Ojamäe ◽  
Henrik Pedersen

<p>Aluminium nitride (AlN) is a semiconductor with a wide range of applications from light emitting diodes to high frequency transistors. Electronic grade AlN is routinely deposited at 1000 °C by chemical vapour deposition (CVD) using trimethylaluminium (TMA) and NH<sub>3</sub> while low temperature CVD routes to high quality AlN are scarce and suffer from high levels of carbon impurities in the film. We report on an ALD-like CVD approach with time-resolved precursor supply where thermally induced desorption of methyl groups from the AlN surface is enhanced by the addition of an extra pulse, H<sub>2</sub>, N<sub>2</sub> or Ar between the TMA and NH<sub>3</sub> pulses. The enhanced desorption allowed deposition of AlN films with carbon content of 1 at. % at 480 °C. Kinetic- and quantum chemical modelling suggest that the extra pulse between TMA and NH<sub>3</sub> prevents re-adsorption of desorbing methyl groups terminating the AlN surface after the TMA pulse. </p>


Sign in / Sign up

Export Citation Format

Share Document