In situ carbon encapsulation of vertical MoS2 arrays with SnO2 for durable high rate lithium storage: dominant pseudocapacitive behavior

Nanoscale ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 741-751 ◽  
Author(s):  
Mengjiao Li ◽  
Qinglin Deng ◽  
Junyong Wang ◽  
Kai Jiang ◽  
Zhigao Hu ◽  
...  

An in situ polymerization–carbonization process for novel carbon-sealed vertical MoS2–SnO2 anchored on graphene aerogel (C@MoS2–SnO2@Gr) has enabled excellent rate performance and durability as the lithium ion batteries anode.

2018 ◽  
Vol 6 (16) ◽  
pp. 7070-7079 ◽  
Author(s):  
Long Pan ◽  
Zheng-Wei Zhou ◽  
Yi-Tao Liu ◽  
Xu-Ming Xie

A universal strategy is proposed for thein situsynthesis of TiO2(B) nanosheets on pristine carbon nanomaterials. Benefiting from a remarkable synergistic effect, the resulting nanohybrids exhibit superior high-rate lithium storage performance. In this sense, our strategy may open the door to next-generation, high-power and high-energy anode materials for lithium-ion batteries.


2016 ◽  
Vol 4 (35) ◽  
pp. 13646-13651 ◽  
Author(s):  
Cheng Zheng ◽  
Minying Liu ◽  
Wenqiang Chen ◽  
Lingxing Zeng ◽  
Mingdeng Wei

A Se/CMK-3 composite was in situ synthesized, exhibiting large capacity, high rate performance and excellent long-term cycling stability for Li-ion intercalation.


2015 ◽  
Vol 17 (3) ◽  
pp. 1580-1584 ◽  
Author(s):  
Sheng Han ◽  
Jianzhong Jiang ◽  
Yanshan Huang ◽  
Yanping Tang ◽  
Jing Cao ◽  
...  

A TiO2–SnO2–graphene aerogel hybrid is fabricated using a facile hydrothermal route, which shows excellent cycling stability and rate performance as the anode material for lithium ion batteries.


2013 ◽  
Vol 1 (25) ◽  
pp. 7306 ◽  
Author(s):  
Jinli Yang ◽  
Jiajun Wang ◽  
Yongji Tang ◽  
Dongniu Wang ◽  
Biwei Xiao ◽  
...  

2014 ◽  
Vol 2 (47) ◽  
pp. 20022-20029 ◽  
Author(s):  
Wanfeng Yang ◽  
Guanhua Cheng ◽  
Chaoqun Dong ◽  
Qingguo Bai ◽  
Xiaoting Chen ◽  
...  

3D binder-free NiO nanorod-anchored Ni foam electrodes synthesized by in situ anodization and annealing exhibit superior cyclability and high rate performance.


2017 ◽  
Vol 5 (35) ◽  
pp. 18737-18743 ◽  
Author(s):  
Yazhou Wang ◽  
Jisheng Han ◽  
Xingxing Gu ◽  
Sima Dimitrijev ◽  
Yanglong Hou ◽  
...  

A top-down strategy is developed to prepare ultrathin Fe2O3 nanoflakes (approximately 4 nm thick). The ultrathin nanoflakes showed a large specific capability, high rate performance and long lifetime as anode material for lithium ion batteries.


Nanoscale ◽  
2022 ◽  
Author(s):  
zhiwen Long ◽  
Chu Shi ◽  
Caiqin Wu ◽  
Luhan Yuan ◽  
Hui Qiao ◽  
...  

Fe2O3 as anode for lithium-ion batteries has attracted intense attention because of its high theoretical capacity, natural abundance and good safety. However, the inferior cycling stability, low-rate performance and limited...


2018 ◽  
Vol 6 (16) ◽  
pp. 7005-7013 ◽  
Author(s):  
Shiyao Lu ◽  
Tianxiang Zhu ◽  
Zhaoyang Li ◽  
Yuanchao Pang ◽  
Lei Shi ◽  
...  

Ultrafine Ni3V2O8@CMK-3 nanocomposites with long-term and high-rate lithium storage capability have been developed.


Sign in / Sign up

Export Citation Format

Share Document