A universal strategy for thein situsynthesis of TiO2(B) nanosheets on pristine carbon nanomaterials for high-rate lithium storage

2018 ◽  
Vol 6 (16) ◽  
pp. 7070-7079 ◽  
Author(s):  
Long Pan ◽  
Zheng-Wei Zhou ◽  
Yi-Tao Liu ◽  
Xu-Ming Xie

A universal strategy is proposed for thein situsynthesis of TiO2(B) nanosheets on pristine carbon nanomaterials. Benefiting from a remarkable synergistic effect, the resulting nanohybrids exhibit superior high-rate lithium storage performance. In this sense, our strategy may open the door to next-generation, high-power and high-energy anode materials for lithium-ion batteries.

2017 ◽  
Vol 5 (44) ◽  
pp. 23221-23227 ◽  
Author(s):  
Hao Wang ◽  
Ziliang Chen ◽  
Yang Liu ◽  
Hongbin Xu ◽  
Licheng Cao ◽  
...  

Hybrid nanocomposites constructed from starfish-like ZnxCo1−xS rooted in porous carbon and strongly coupled carbon nanotubes have been rationally designed and they exhibit excellent lithium-storage performance.


Nanoscale ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 741-751 ◽  
Author(s):  
Mengjiao Li ◽  
Qinglin Deng ◽  
Junyong Wang ◽  
Kai Jiang ◽  
Zhigao Hu ◽  
...  

An in situ polymerization–carbonization process for novel carbon-sealed vertical MoS2–SnO2 anchored on graphene aerogel (C@MoS2–SnO2@Gr) has enabled excellent rate performance and durability as the lithium ion batteries anode.


2015 ◽  
Vol 39 (11) ◽  
pp. 8416-8423 ◽  
Author(s):  
Xiaoyu Wu ◽  
Songmei Li ◽  
Bo Wang ◽  
Jianhua Liu ◽  
Mei Yu

Various micro/nano-structured MnCo2O4 with excellent lithium storage performance were synthesized controllably.


Nanoscale ◽  
2021 ◽  
Author(s):  
Yifan Zhang ◽  
Yamin Zhang ◽  
Edgar Aldama ◽  
Huitian Liu ◽  
Zhijian Sun ◽  
...  

Rational fabrication and smart design of multi-component anode materials to achieve desirable reversible capacities and exceptional cyclability are significant for lithium-ion batteries (LIBs). Herein, walnut-like ZnO/Co3O4 porous nanospheres were prepared...


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Chenhao Qian ◽  
Ziyang He ◽  
Chen Liang ◽  
Weixi Ji

High-pressure torsion (HPT), a severe plastic deformation (SPD) method, is rarely used in the manufacturing process of functional materials. In the present work, the authors creatively proposed using HPT as an alternative method an approach for high energy ball-milling in the preparation of an Fe3O4 and lamellar graphite nanosheet (GNS) composite material. The corresponding electrochemical experiments verified that the in situ synthesized Fe3O4/GNS composite material has good lithium-storage performance and that it can retain good capacity (548.2 mA h g−1) even after several hundred cycles with high current density (8 C). Meanwhile, this performance has directly confirmed that SPD technique has great potential for the preparation of anode materials of lithium-ion batteries, especially in manufacturing metallic functional nanomaterials.


2021 ◽  
Author(s):  
Zheng Liu ◽  
Mengkang Yu ◽  
Xiaodan Wang ◽  
Fengyu Lai ◽  
Chao Wang ◽  
...  

A sandwich shelled hollow TiO2@Co3O4@Co3O4/C composite is synthesized by consecutive coating Co3O4 nanosheets and TiO2 particles on CO3O4/C hollow spheres. The composite delivers the excellent lithium storage performance, maintaining 1081.78...


RSC Advances ◽  
2015 ◽  
Vol 5 (65) ◽  
pp. 52993-52997 ◽  
Author(s):  
Hongbo Geng ◽  
Shuangshuang Li ◽  
Yue Pan ◽  
Yonggang Yang ◽  
Junwei Zheng ◽  
...  

The PH-Fe3O4@C/Cl spheres were successfully fabricated through a novel and controllable route, which could deliver superior lithium storage performance in terms of high reversible capacity, stable cycling and rate performances.


2019 ◽  
Vol 3 (12) ◽  
pp. 3370-3374 ◽  
Author(s):  
Jia Li ◽  
Yongxing Zhang ◽  
Li Li ◽  
Lixun Cheng ◽  
Song Dai ◽  
...  

Mixed transition metal oxides with high theoretical capacity show great potential to replace carbonaceous anode materials in lithium-ion batteries.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 68 ◽  
Author(s):  
Wenxing Liu ◽  
Tianhao Yao ◽  
Sanmu Xie ◽  
Yiyi She ◽  
Hongkang Wang

In order to overcome the poor electrical conductivity of titania (TiO2) and silica (SiO2) anode materials for lithium ion batteries (LIBs), we herein report a facile preparation of integrated titania–silica–carbon (TSC) nanofibers via electrospinning and subsequent heat-treatment. Both titania and silica are successfully embedded into the conductive N-doped carbon nanofibers, and they synergistically reinforce the overall strength of the TSC nanofibers after annealing (Note that titania–carbon or silica–carbon nanofibers cannot be obtained under the same condition). When applied as an anode for LIBs, the TSC nanofiber electrode shows superior cycle stability (502 mAh/g at 100 mA/g after 300 cycles) and high rate capability (572, 518, 421, 334, and 232 mAh/g each after 10 cycles at 100, 200, 500, 1000 and 2000 mA/g, respectively). Our results demonstrate that integration of titania/silica into N-doped carbon nanofibers greatly enhances the electrode conductivity and the overall structural stability of the TSC nanofibers upon repeated lithiation/delithiation cycling.


2014 ◽  
Vol 2 (26) ◽  
pp. 9982-9993 ◽  
Author(s):  
Chunfu Lin ◽  
Xiaoyong Fan ◽  
Yuelong Xin ◽  
Fuquan Cheng ◽  
Man On Lai ◽  
...  

Fe2+/Cr3+ doped LTO/MWCNT composites were made by combining doping, compositing and particle-size reduction, and exhibit improved electrochemical performances.


Sign in / Sign up

Export Citation Format

Share Document