scholarly journals A durable thin-film nanofibrous composite nanofiltration membrane prepared by interfacial polymerization on a double-layer nanofibrous scaffold

RSC Advances ◽  
2017 ◽  
Vol 7 (29) ◽  
pp. 18001-18013 ◽  
Author(s):  
Yin Yang ◽  
Xiong Li ◽  
Lingdi Shen ◽  
Xuefen Wang ◽  
Benjamin S. Hsiao

PPA–PAN–AA/PAN nanofibrous composite membranes with interfacial polymerization between PIP and TMC based on a PAN–AA/PAN double-layer nanofibrous substrate.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Baturalp Yalcinkaya ◽  
Fatma Yalcinkaya ◽  
Jiri Chaloupek

The aim of the study was to prepare a thin film nanofibrous composite membrane utilized for nanofiltration technologies. The composite membrane consists of a three-layer system including a nonwoven part as the supporting material, a nanofibrous scaffold as the porous surface, and an active layer. The nonwoven part and the nanofibrous scaffold were laminated together to improve the mechanical properties of the complete membrane. Active layer formations were done successfully via interfacial polymerization. A filtration test was carried out using solutions of MgSO4, NaCl, Na2SO4, CaCl2, and real seawater using the dead-end filtration method. The results indicated that the piperazine-based membrane exhibited higher rejection of divalent salt ions (>98%) with high flux. In addition, them-phenylenediamine-based membrane exhibited higher rejection of divalent and monovalent salt ions (>98% divalent and >96% monovalent) with reasonable flux. The desalination of real seawater results showed that thin film nanofibrous composite membranes were able to retain 98% of salt ions from highly saline seawater without showing any fouling. The electrospun nanofibrous materials proved to be an alternative functional supporting material instead of the polymeric phase-inverted support layer in liquid filtration.


2012 ◽  
Vol 482-484 ◽  
pp. 565-568 ◽  
Author(s):  
Jun Zhao ◽  
Li Na Yu ◽  
Xiong Li ◽  
Yin Yang ◽  
Xue Fen Wang

Thin-film nanofiltration composite (TFNFC) membrane consisting of polyethersulfone (PES) nanofibrous support layer modified by 3, 4-dihydroxy-phenethylamine (dopamine) and interfacial polymerization (IFP) polyamide selective barrier layer was obtained in this study. The hydrophilicity of PES nanofibrous membrane was tremendously improved as the water static contact angle changed from 81.6° to 26.83° by dopamine modification. An ultrathin selective layer was produced by IFP reaction between solutions of piperazine (PIP) and trimesoyl chloride (TMC) on the dopamine modified porous PES membrane. The TFNFC membrane presented relatively high permeate flux (~59.9 L/m2h) and high salt rejection (~98.9%) to divalent anion solutions (1000mg/L, Na2SO4) at a low pressure of 0.6 MPa. It could be believed that dopamine modification would be very efficient to fabricate the composite membranes with stable structure and high filtration performance.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 269 ◽  
Author(s):  
Yu-Hsuan Chiao ◽  
Tanmoy Patra ◽  
Micah Belle Marie Yap Ang ◽  
Shu-Ting Chen ◽  
Jorge Almodovar ◽  
...  

Nanofiltration membranes have evolved as a promising solution to tackle the clean water scarcity and wastewater treatment processes with their low energy requirement and environment friendly operating conditions. Thin film composite nanofiltration membranes with high permeability, and excellent antifouling and antibacterial properties are important component for wastewater treatment and clean drinking water production units. In the scope of this study, thin film composite nanofiltration membranes were fabricated using polyacrylonitrile (PAN) support and fast second interfacial polymerization modification methods by grafting polyethylene amine and zwitterionic sulfobutane methacrylate moieties. Chemical and physical alteration in structure of the membranes were characterized using methods like ATR-FTIR spectroscopy, XPS analysis, FESEM and AFM imaging. The effects of second interfacial polymerization to incorporate polyamide layer and ‘ion pair’ characteristics, in terms of water contact angle and surface charge analysis was investigated in correlation with nanofiltration performance. Furthermore, the membrane characteristics in terms of antifouling properties were evaluated using model protein foulants like bovine serum albumin and lysozyme. Antibacterial properties of the modified membranes were investigated using E. coli as model biofoulant. Overall, the effect of second interfacial polymerization without affecting the selectivity layer of nanofiltration membrane for their potential large-scale application was investigated in detail.


RSC Advances ◽  
2015 ◽  
Vol 5 (51) ◽  
pp. 40742-40752 ◽  
Author(s):  
Gui-E. Chen ◽  
Yan-Jun Liu ◽  
Zhen-Liang Xu ◽  
Yong-Jian Tang ◽  
Hui-Hong Huang ◽  
...  

A novel thin-film composite polyamide membrane for nanofiltration is prepared, and the addition of sodium N-cyclohexylsulfamate is found to have a significant influence on its performance.


RSC Advances ◽  
2015 ◽  
Vol 5 (96) ◽  
pp. 78950-78957 ◽  
Author(s):  
Pravin G. Ingole ◽  
Won Kil Choi ◽  
Il-Hyun Baek ◽  
Hyung Keun Lee

In the present study, thin film composite membranes have been prepared using an interfacial polymerization method.


2021 ◽  
Author(s):  
Lorena Paseta ◽  
Carlos Echaide-Gorriz ◽  
Carlos Téllez Ariso ◽  
Joaquin Coronas

Thin film composite membranes (TFC) of polyamide (PA) prepared by interfacial polymerization (IP) between a diamine and an acyl chloride are those applied to industrial nanofiltration and reverse osmosis. Water,...


Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 297
Author(s):  
Peter-Renaat Van den Mooter ◽  
Liridona Dedvukaj ◽  
Ivo F. J. Vankelecom

Polyamide (PA) thin-film composite (TFC) membranes are commonly applied in reversed osmosis (RO) and nanofiltration (NF) applications due to their thin, dense top-layer, and high selectivity. Recently, the conventional organic phase (i.e., hexane) during interfacial polymerization (IP) was replaced by less toxic ionic liquids (ILs) which led to excellent membrane performances. As the high price of most ILs limits their up-scaling, the potential use of inexpensive Aliquat was investigated in this study. The thin-film composite (TFC) membranes were optimized to remove flavor compounds, i.e., ethyl acetate (EA) and isoamyl acetate (IA), from a fermentation broth. A multi-parameter optimization was set-up involving type of support, reaction time for IP, water content of Aliquat, and concentration of both monomers m-phenylenediamine (MPD) and trimesoylchloride (TMC). The membranes prepared using Aliquat showed similar fluxes as those prepared from a reference IL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C4mpyr][Tf2N]) but with better EA and IA retentions, even better than for a commercial RO membrane (GEA type AF). Finally, the recently introduced epoxide-curing of Bisphenol A diglycidyl ether (BADGE) with 1,6-hexanediamine (HDA) was investigated using Aliquat as organic phase. It is the first time this type of IP was performed in combination with an IL as organic phase. The resulting membrane was used in the filtration of a 35 µM Rose Bengal (RB) in 20 wt% dimethylformamide/ water (DMF/H2O) feed mixture. A well-crosslinked poly(β-alkanolamine) film was obtained with a > 97% retention.


Sign in / Sign up

Export Citation Format

Share Document