scholarly journals Thin Film Nanofibrous Composite Membrane for Dead-End Seawater Desalination

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Baturalp Yalcinkaya ◽  
Fatma Yalcinkaya ◽  
Jiri Chaloupek

The aim of the study was to prepare a thin film nanofibrous composite membrane utilized for nanofiltration technologies. The composite membrane consists of a three-layer system including a nonwoven part as the supporting material, a nanofibrous scaffold as the porous surface, and an active layer. The nonwoven part and the nanofibrous scaffold were laminated together to improve the mechanical properties of the complete membrane. Active layer formations were done successfully via interfacial polymerization. A filtration test was carried out using solutions of MgSO4, NaCl, Na2SO4, CaCl2, and real seawater using the dead-end filtration method. The results indicated that the piperazine-based membrane exhibited higher rejection of divalent salt ions (>98%) with high flux. In addition, them-phenylenediamine-based membrane exhibited higher rejection of divalent and monovalent salt ions (>98% divalent and >96% monovalent) with reasonable flux. The desalination of real seawater results showed that thin film nanofibrous composite membranes were able to retain 98% of salt ions from highly saline seawater without showing any fouling. The electrospun nanofibrous materials proved to be an alternative functional supporting material instead of the polymeric phase-inverted support layer in liquid filtration.

RSC Advances ◽  
2017 ◽  
Vol 7 (29) ◽  
pp. 18001-18013 ◽  
Author(s):  
Yin Yang ◽  
Xiong Li ◽  
Lingdi Shen ◽  
Xuefen Wang ◽  
Benjamin S. Hsiao

PPA–PAN–AA/PAN nanofibrous composite membranes with interfacial polymerization between PIP and TMC based on a PAN–AA/PAN double-layer nanofibrous substrate.


2013 ◽  
Vol 377 ◽  
pp. 222-226 ◽  
Author(s):  
Shu Hsien Huang ◽  
Chuan Hsiang Wu ◽  
Kueir Rarn Lee ◽  
Juin Yih Lai

To dehydrate the isopropanol (IPA) by the pervaporation separation process at 25°C, the polysulfonamide thin-film composite (TFC) membranes were prepared via the interfacial polymerization of diamines including 1,3-diaminopropane (DAPE), 1,3-cyclohexanediamine (CHDA) and m-phenylenediamine (MPDA) with 1,3-benzenedisulfonyl dichloride (BDSC) on the surface of modified asymmetric polyacrylonitrile (mPAN) membrane. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectrometry, atomic force microscope (AFM) and water contact angle (WCA) measurements were applied to analyze chemical structure, surface roughness and hydrophilicity of the polymerized layer of composite membrane. In the dehydration of aqueous isopropanol solutions, the DAPE-BDSC/mPAN membrane had the higher permeation flux and the similar water concentration in permeate compared with the CHDA-BDSC/mPAN and MPDA-BDSC/mPAN membranes. The pervaporation performance of the composite membrane was affected by the chemical structure of the polysulfonamide polymer.


Author(s):  
Tzyy-Lung Leon Yu ◽  
Shih-Hao Liu ◽  
Hsiu-Li Lin ◽  
Po-Hao Su

The PBI (poly(benzimidazole)) nano-fiber thin film with thickness of 18–30 μm is prepared by electro-spinning from a 20 wt% PBI/DMAc (N, N′-dimethyl acetamide) solution. The PBI nano-fiber thin film is then treated with a glutaraldehyde liquid for 24h at room temperature to proceed chemical crosslink reaction. The crosslink PBI nano-fiber thin film is then immersed in Nafion solutions to prepare Nafion/PBI nano-fiber composite membranes (thickness 22–34 μm). The morphology of the composite membranes is observed using a scanning electron microscope (SEM). The mechanical properties, conductivity, and unit fuel cell performance of membrane electrode assembly (MEA) of the composite membrane are investigated and compared with those of Nafion-212 membrane (thickness ∼50 μm) and Nafion/porous PTFE (poly(tetrafluoro ethylene)) composite membrane (thickness ∼22 μm). We show the present composite membrane has a similar fuel cell performance to Nafion/PTFE and a better fuel cell performance than Du Pont Nafion-212.


2020 ◽  
Vol 8 (6) ◽  
pp. 3238-3245 ◽  
Author(s):  
Shushan Yuan ◽  
Gang Zhang ◽  
Junyong Zhu ◽  
Natalie Mamrol ◽  
Suilin Liu ◽  
...  

This study demonstrates the application of a hydrogel as the aqueous phase in interfacial polymerization for the synthesis of a thin film composite membrane with ultrahigh permeability.


2016 ◽  
Vol 500 ◽  
pp. 124-135 ◽  
Author(s):  
Mavis C.Y. Wong ◽  
Lin Lin ◽  
Orlando Coronell ◽  
Eric M.V. Hoek ◽  
Guy Z. Ramon

Sign in / Sign up

Export Citation Format

Share Document