A low temperature processed fused-ring electron transport material for efficient planar perovskite solar cells

2017 ◽  
Vol 5 (47) ◽  
pp. 24820-24825 ◽  
Author(s):  
Mingyu Zhang ◽  
Jingshuai Zhu ◽  
Kuan Liu ◽  
Guanhaojie Zheng ◽  
Guanchao Zhao ◽  
...  

A low temperature processed fused-ring electron acceptor IDIC is used as the electron transport layer in planar n–i–p perovskite solar cells, which exhibit higher efficiency and better stability than control devices based on TiO2.

Rare Metals ◽  
2021 ◽  
Author(s):  
Jia-Xing Song ◽  
Xin-Xing Yin ◽  
Zai-Fang Li ◽  
Yao-Wen Li

Abstract As a promising photovoltaic technology, perovskite solar cells (pero-SCs) have developed rapidly over the past few years and the highest power conversion efficiency is beyond 25%. Nowadays, the planar structure is universally popular in pero-SCs due to the simple processing technology and low-temperature preparation. Electron transport layer (ETL) is verified to play a vital role in the device performance of planar pero-SCs. Particularly, the metal oxide (MO) ETL with low-cost, superb versatility, and excellent optoelectronic properties has been widely studied. This review mainly focuses on recent developments in the use of low-temperature-processed MO ETLs for planar pero-SCs. The optical and electronic properties of widely used MO materials of TiO2, ZnO, and SnO2, as well as the optimizations of these MO ETLs are briefly introduced. The commonly used methods for depositing MO ETLs are also discussed. Then, the applications of different MO ETLs on pero-SCs are reviewed. Finally, the challenge and future research of MO-based ETLs toward practical application of efficient planar pero-SCs are proposed. Graphical abstract


2021 ◽  
Vol 4 ◽  
pp. 100066
Author(s):  
A. Ashina ◽  
Ramya Krishna Battula ◽  
Easwaramoorthi Ramasamy ◽  
Narendra Chundi ◽  
S. Sakthivel ◽  
...  

2018 ◽  
Vol 6 (17) ◽  
pp. 7409-7419 ◽  
Author(s):  
Zhiyong Liu ◽  
Bo Sun ◽  
Xingyue Liu ◽  
Jinghui Han ◽  
Haibo Ye ◽  
...  

Low-temperature printable carbon based planar-heterojunction perovskite solar cells with efficiencies exceeding 15% were demonstrated by using a TiO2/SnO2bilayer as ETL together with CuPc as HTL.


2018 ◽  
Vol 6 (19) ◽  
pp. 9132-9138 ◽  
Author(s):  
Guannan Yin ◽  
Huan Zhao ◽  
Jiangshan Feng ◽  
Jie Sun ◽  
Junqing Yan ◽  
...  

In this paper, it is demonstrated that two-dimensional TiS2 nanosheets can be applied as an effective ETL in planar PSCs for the first time.


2018 ◽  
Vol 08 (02) ◽  
pp. 1850009
Author(s):  
Enqi Wang ◽  
Peng Chen ◽  
Xingtian Yin ◽  
Bowen Gao ◽  
Wenxiu Que

It is well known that electron transport layer (ETL) plays an indispensable role in the planar heterojunction perovskite solar cells (PSCs). TiO2 is widely used as an ETL material due to its excellent transport properties, however, the presence of defects in the TiO2 layer diminishes the power conversion efficiency (PCE) of the devices. Herein, we introduce a method of low-temperature TiCl4 treatment to deposit a TiOx layer on the surface of TiO2 film, which can effectively passivate trap states at the TiO2 surface. Moreover, the treating process is optimized to be 30[Formula: see text]min using a 40[Formula: see text]mM TiCl4 aqueous solution. Benefiting from this, we obtain the champion device with the highest PCE of 18.47%, which is mainly due to the reduction of surface defects and the deposition of the well-crystallized perovskite films. Besides, the modified PSCs exhibit an average PCE of 17.59%, which is much better than the control devices.


2020 ◽  
Vol 480 ◽  
pp. 229134
Author(s):  
Wenqiu Deng ◽  
Jinhua Li ◽  
Junjun Jin ◽  
Debesh Devadutta Mishra ◽  
Juan Xin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document