scholarly journals Analysis and engineering of substrate shuttling by the acyl carrier protein (ACP) in fatty acid synthases (FASs)

2018 ◽  
Vol 54 (82) ◽  
pp. 11606-11609 ◽  
Author(s):  
Emanuele Rossini ◽  
Jan Gajewski ◽  
Maja Klaus ◽  
Gerhard Hummer ◽  
Martin Grininger

Perturbations of domain–domain interactions impact the function of type I fatty acid synthases.

2007 ◽  
Vol 283 (1) ◽  
pp. 518-528 ◽  
Author(s):  
Eliza Ploskoń ◽  
Christopher J. Arthur ◽  
Simon E. Evans ◽  
Christopher Williams ◽  
John Crosby ◽  
...  

2007 ◽  
Vol 85 (6) ◽  
pp. 649-662 ◽  
Author(s):  
David M. Byers ◽  
Huansheng Gong

Acyl carrier protein (ACP) is a universal and highly conserved carrier of acyl intermediates during fatty acid synthesis. In yeast and mammals, ACP exists as a separate domain within a large multifunctional fatty acid synthase polyprotein (type I FAS), whereas it is a small monomeric protein in bacteria and plastids (type II FAS). Bacterial ACPs are also acyl donors for synthesis of a variety of products, including endotoxin and acylated homoserine lactones involved in quorum sensing; the distinct and essential nature of these processes in growth and pathogenesis make ACP-dependent enzymes attractive antimicrobial drug targets. Additionally, ACP homologues are key components in the production of secondary metabolites such as polyketides and nonribosomal peptides. Many ACPs exhibit characteristic structural features of natively unfolded proteins in vitro, with a dynamic and flexible conformation dominated by 3 parallel α helices that enclose the thioester-linked acyl group attached to a phosphopantetheine prosthetic group. ACP conformation may also be influenced by divalent cations and interaction with partner enzymes through its “recognition” helix II, properties that are key to its ability to alternately sequester acyl groups and deliver them to the active sites of ACP-dependent enzymes. This review highlights recent progress in defining how the structural features of ACP are related to its multiple carrier roles in fatty acid metabolism.


1996 ◽  
Vol 40 (12) ◽  
pp. 2813-2819 ◽  
Author(s):  
R A Slayden ◽  
R E Lee ◽  
J W Armour ◽  
A M Cooper ◽  
I M Orme ◽  
...  

Thiolactomycin (TLM) possesses in vivo antimycobacterial activity against the saprophytic strain Mycobacterium smegmatis mc2155 and the virulent strain M. tuberculosis Erdman, resulting in complete inhibition of growth on solid media at 75 and 25 micrograms/ml, respectively. Use of an in vitro murine macrophage model also demonstrated the killing of viable intracellular M. tuberculosis in a dose-dependent manner. Through the use of in vivo [1,2-14C]acetate labeling of M. smegmatis, TLM was shown to inhibit the synthesis of both fatty acids and mycolic acids. However, synthesis of the shorter-chain alpha'-mycolates of M. smegmatis was not inhibited by TLM, whereas synthesis of the characteristic longer-chain alpha-mycolates and epoxymycolates was almost completely inhibited at 75 micrograms/ml. The use of M. smegmatis cell extracts demonstrated that TLM specifically inhibited the mycobacterial acyl carrier protein-dependent type II fatty acid synthase (FAS-II) but not the multifunctional type I fatty acid synthase (FAS-I). In addition, selective inhibition of long-chain mycolate synthesis by TLM was demonstrated in a dose-response manner in purified, cell wall-containing extracts of M. smegmatis cells. The in vivo and in vitro data and knowledge of the mechanism of TLM resistance in Escherichia coli suggest that two distinct TLM targets exist in mycobacteria, the beta-ketoacyl-acyl carrier protein synthases involved in FAS-II and the elongation steps leading to the synthesis of the alpha-mycolates and oxygenated mycolates. The efficacy of TLM against M. smegmatis and M. tuberculosis provides the prospects of identifying fatty acid and mycolic acid biosynthetic genes and revealing a novel range of chemotherapeutic agents directed against M. tuberculosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joseph S. Snowden ◽  
Jehad Alzahrani ◽  
Lee Sherry ◽  
Martin Stacey ◽  
David J. Rowlands ◽  
...  

AbstractType I fatty acid synthases (FASs) are critical metabolic enzymes which are common targets for bioengineering in the production of biofuels and other products. Serendipitously, we identified FAS as a contaminant in a cryoEM dataset of virus-like particles (VLPs) purified from P. pastoris, an important model organism and common expression system used in protein production. From these data, we determined the structure of P. pastoris FAS to 3.1 Å resolution. While the overall organisation of the complex was typical of type I FASs, we identified several differences in both structural and enzymatic domains through comparison with the prototypical yeast FAS from S. cerevisiae. Using focussed classification, we were also able to resolve and model the mobile acyl-carrier protein (ACP) domain, which is key for function. Ultimately, the structure reported here will be a useful resource for further efforts to engineer yeast FAS for synthesis of alternate products.


2004 ◽  
Vol 381 (3) ◽  
pp. 719-724 ◽  
Author(s):  
Mili KAPOOR ◽  
C. Chandramouli REDDY ◽  
M. V. KRISHNASASTRY ◽  
Namita SUROLIA ◽  
Avadhesha SUROLIA

Triclosan is a potent inhibitor of FabI (enoyl-ACP reductase, where ACP stands for acyl carrier protein), which catalyses the last step in a sequence of four reactions that is repeated many times with each elongation step in the type II fatty acid biosynthesis pathway. The malarial parasite Plasmodium falciparum also harbours the genes and is capable of synthesizing fatty acids by utilizing the enzymes of type II FAS (fatty acid synthase). The basic differences in the enzymes of type I FAS, present in humans, and type II FAS, present in Plasmodium, make the enzymes of this pathway a good target for antimalarials. The steady-state kinetics revealed time-dependent inhibition of FabI by triclosan, demonstrating that triclosan is a slow-tight-binding inhibitor of FabI. The inhibition followed a rapid equilibrium step to form a reversible enzyme–inhibitor complex (EI) that isomerizes to a second enzyme–inhibitor complex (EI*), which dissociates at a very slow rate. The rate constants for the isomerization of EI to EI* and the dissociation of EI* were 5.49×10−2 and 1×10−4 s−1 respectively. The Ki value for the formation of the EI complex was 53 nM and the overall inhibition constant Ki* was 96 pM. The results match well with the rate constants derived independently from fluorescence analysis of the interaction of FabI and triclosan, as well as those obtained by surface plasmon resonance studies [Kapoor, Mukhi, N. Surolia, Sugunda and A. Surolia (2004) Biochem. J. 381, 725–733].


2005 ◽  
Vol 4 (7) ◽  
pp. 1211-1220 ◽  
Author(s):  
Xiaomin Cai ◽  
Dustin Herschap ◽  
Guan Zhu

ABSTRACT Recently, two types of fatty acid synthases (FASs) have been discovered from apicomplexan parasites. Although significant progress has been made in characterizing these apicomplexan FASs, virtually nothing was previously known about the activation and regulation of these enzymes. In this study, we report the discovery and characterization of two distinct types of phosphopantetheinyl transferase (PPTase) that are responsible for synthesizing holo-acyl carrier protein (ACP) from three apicomplexan parasites: surfactin production element (SFP) type in Cryptosporidium parvum (CpSFP-PPT), holo-ACP synthase (ACPS)-type in Plasmodium falciparum (PfACPS-PPT), and both SFP and ACPS types in Toxoplasma gondii (TgSFP-PPT and TgACPS-PPT). CpSFP-PPT and TgSFP-PPT are monofunctional, cytosolic, and phylogenetically related to animal PPTases. However, PfACPS-PPT and TgACPS-PPT are bifunctional (fused with a metal-dependent hydrolase), likely targeted to the apicoplast, and more closely related to proteobacterial PPTases. The function of apicomplexan PPTases has been confirmed by detailed functional analysis using recombinant CpSFP-PPT expressed from an artificially synthesized gene with codon usage optimized for Escherichia coli. The recombinant CpSFP-PPT was able to activate the ACP domains from the C. parvum type I FAS in vitro using either CoA or acetyl-CoA as a substrate, or in vivo when coexpressed in bacteria, with kinetic characteristics typical of PPTases. These observations suggest that the two types of fatty acid synthases in the Apicomplexa are activated and regulated by two evolutionarily distinct PPTases.


ChemBioChem ◽  
2008 ◽  
Vol 9 (10) ◽  
pp. 1559-1563 ◽  
Author(s):  
Jason M. Crawford ◽  
Anna L. Vagstad ◽  
Kenneth C. Ehrlich ◽  
Daniel W. Udwary ◽  
Craig A. Townsend

2021 ◽  
Author(s):  
Joseph S. Snowden ◽  
Jehad Alzahrani ◽  
Lee Sherry ◽  
Martin Stacey ◽  
David J. Rowlands ◽  
...  

SummaryType I fatty acid synthases (FASs) are critical metabolic enzymes which are common targets for bioengineering in the production of biofuels and other products. Serendipitously, we identified FAS as a contaminant in a cryoEM dataset of virus-like particles (VLPs) purified from P. pastoris, an important model organism and common expression system used in protein production. From these data, we determined the structure of P. pastoris FAS to 3.1 Å resolution. While the overall organisation of the complex was typical of type I FASs, we identified several differences in both structural and enzymatic domains through comparison with the prototypical yeast FAS from S. cerevisiae. Using focussed classification, we were also able to resolve and model the mobile acyl-carrier protein (ACP) domain, which is key for function. Ultimately, the structure reported here will be a useful resource for further efforts to engineer yeast FAS for synthesis of alternate products.


Sign in / Sign up

Export Citation Format

Share Document