Gas adsorption, magnetic, and fluorescent sensing properties of four coordination polymers based on 1,3,5-tris(4-carbonylphenyloxy)benzene and bis(imidazole) linkers

CrystEngComm ◽  
2018 ◽  
Vol 20 (47) ◽  
pp. 7666-7676 ◽  
Author(s):  
Jie Zhang ◽  
Ling-Ling Gao ◽  
Li-jun Zhai ◽  
Xiao-Qing Wang ◽  
Li-Ming Fan ◽  
...  

Four 3D novel coordination polymers (CPs) have been synthesized under solvothermal conditions. Furthermore, gas sorption behaviors revealed that complex 1 has excellent selective separation for CO2/CH4.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aleksandra Gonciaruk ◽  
Matthew R. Hall ◽  
Michael W. Fay ◽  
Christopher D. J. Parmenter ◽  
Christopher H. Vane ◽  
...  

AbstractGas storage and recovery processes in shales critically depend on nano-scale porosity and chemical composition, but information about the nanoscale pore geometry and connectivity of kerogen, insoluble organic shale matter, is largely unavailable. Using adsorption microcalorimetry, we show that once strong adsorption sites within nanoscale network are taken, gas adsorption even at very low pressure is governed by pore width rather than chemical composition. A combination of focused ion beam with scanning electron microscopy and transmission electron microscopy reveal the nanoscale structure of kerogen includes not only the ubiquitous amorphous phase but also highly graphitized sheets, fiber- and onion-like structures creating nanoscale voids accessible for gas sorption. Nanoscale structures bridge the current gap between molecular size and macropore scale in existing models for kerogen, thus allowing accurate prediction of gas sorption, storage and diffusion properties in shales.


CrystEngComm ◽  
2014 ◽  
Vol 16 (22) ◽  
pp. 4783-4795 ◽  
Author(s):  
Biswajit Bhattacharya ◽  
Debraj Saha ◽  
Dilip Kumar Maity ◽  
Rajdip Dey ◽  
Debajyoti Ghoshal

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Runmei Ding ◽  
Zixin He ◽  
Meilin Wang ◽  
Danian Tian ◽  
Peipei Cen

AbstractBased on 2-(4-pyridyl)-terephthalate (H2pta) and oxalate ligands, two new lanthanide-containing coordination polymers (CPs), [Tb(pta)(C2O4)0.5(H2O)2)]·2H2O (1) and [Sm(pta)(C2O4)0.5(H2O)2)]·2H2O (2), have been synthesized under solvothermal conditions. The structures of both 1 and 2 have been determined by single-crystal X-ray diffraction. Infrared, elemental analysis, powder X-ray diffraction and thermogravimetric analysis data are also presented. The crystals of 1 and 2 exhibit isostructural layer-like networks, crystallizing in the triclinic space group P$‾{1}$. The layers are further stabilized and associated into 3D architectures through hydrogen bonding. Remarkably, the CPs 1 and 2 exhibit excellent water stability and remarkable thermostability with thermal decomposition temperatures of more than 420 °C.


Sign in / Sign up

Export Citation Format

Share Document