Study on the mechanism of platinum(ii)-catalyzed asymmetric ring-opening addition of oxabicyclic alkenes with arylboronic acids

2018 ◽  
Vol 20 (20) ◽  
pp. 14105-14116
Author(s):  
Sipeng Lin ◽  
Chao Xu ◽  
Daoling Peng ◽  
Liang Peng ◽  
Dingqiao Yang ◽  
...  

The mechanism of an asymmetric ring-opening (ARO) addition of oxabicyclic alkenes catalyzed by a platinum(ii) catalyst was investigated by M06-2X/6-311G(d,p) using density functional theory (DFT).


2009 ◽  
Vol 62 (2) ◽  
pp. 157 ◽  
Author(s):  
Rong-Xiu Zhu ◽  
Ruo-Xi Wang ◽  
Dong-Ju Zhang ◽  
Cheng-Bu Liu

The thiourea-catalyzed methanolysis of d-lactide, a model system for the initiation and propagation of the organocatalyzed ring-opening polymerization (ROP) of lactide, has been studied by performing density functional theory calculations. Both the catalyzed and uncatalyzed reactions are explored along two possible pathways: one involves the stepwise addition–elimination pathway and the other is related to the concerted pathway. It is found that the reaction without the presence of the catalyst is difficult because the barrier involved is as high as 176 kJ mol–1. With the aid of a thiourea catalyst, the barrier is reduced to 88 kJ mol–1 with a preference for the stepwise addition–elimination mechanism over the concerted one. The role of the catalyst has been rationalized by analyzing the frontier molecular orbital interactions between the catalyst and substrates and by performing natural population analysis. Finally, another mechanism involving acyl transfer is discussed for the thiourea-catalyzed ROP.



2012 ◽  
Vol 134 (44) ◽  
pp. 18253-18256 ◽  
Author(s):  
Chen Zhu ◽  
Gongqiang Li ◽  
Daniel H. Ess ◽  
John R. Falck ◽  
László Kürti


Author(s):  
Yang Wang ◽  
Yan Qiao ◽  
Yu Lan ◽  
Donghui Wei

Using density functional theory, we investigated the origin of selectivity in the N-heterocyclic carbene (NHC)-catalyzed transformation of formylcyclopropane with an alkylidene oxindole.



1999 ◽  
Vol 77 (5-6) ◽  
pp. 540-549 ◽  
Author(s):  
Gennady V Shustov ◽  
Michael TH Liu ◽  
K N Houk

The reactions of the singlet methylene (1a) and dimethylcarbene (1b), with their diazirine precursors, diazirine (2a), and dimethyldiazirine (2b), have been studied theoretically using ab initio and density functional theory. The reaction has no activation barriers for the parent system (1a + 2a) and proceeds via a reactive complex and a transition state with a small negative enthalpy of activation Δ Hnot =298 = -1.1 kcal mol-1, ΔSnot =298 = -34.4 cal mol-1 K-1, ΔG°298 = 9.2 kcal mol-1) for the dimethyl derivatives (1b + 2b). The formation of N-methylene diazirinium ylides (3a,b) is exothermic by 64-80 kcal mol-1. The isomer, 1,3-diazabicyclo[1.1.0]butane (4a), is more stable (5-12 kcal mol-1) than isomer 3a, but can neither be formed by direct thermal reaction of 1a with 2a nor undergo the direct rearrangement into formaldazine (5a). The rearrangement of ylides 3a,b into azines 5a,b proceeds by conrotatory C3-N1 ring opening. The predicted activation barrier of ca. 15 kcal mol-1 for the ring opening in ylide 3b is in excellent agreement with experimental data. The formation of pyridinium ylides from carbenes and pyridine is also studied.Key words: diazirinium ylide, ab initio MO (molecular orbital) theory, density functional theory, pyridinium ylide, CIS (singles configuration interaction) transition energies.



ARKIVOC ◽  
2001 ◽  
Vol 2001 (12) ◽  
pp. 116-133 ◽  
Author(s):  
Belquis Mothana ◽  
Trevor A. Bourgeois ◽  
Rebecca M. Longley ◽  
Geri-Lynn Devereaux ◽  
Robert S. McDonald ◽  
...  


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 820
Author(s):  
Sami Fadlallah ◽  
Jashvini Jothieswaran ◽  
Iker Del Rosal ◽  
Laurent Maron ◽  
Fanny Bonnet ◽  
...  

The reactivity of rare-earth complexes RE(BH4)2(C3H5)(THF)x (RE = La, Nd, Sm, Y, Sc) toward the Ring-Opening Polymerization (ROP) of ε-caprolactone (ε-CL) was rationalized by Density Functional Theory (DFT) calculations. Even if the polymerization reaction can be initiated by both RE-(BH4) and RE-allyl bonds, experimental investigations have shown that the initiation via the borohydride ligand was favored, as no allyl group could be detected at the chain-end of the resulting polymers. DFT studies could confirm these observations, as it was highlighted that even if the activation barriers are both accessible, the allyl group is not active for the ROP of ε-CL due to the formation of a highly stable intermediate that disfavors the subsequent ring-opening.





Sign in / Sign up

Export Citation Format

Share Document