scholarly journals Imaging H abstraction dynamics in crossed molecular beams: O(3P) + propanol isomers

2019 ◽  
Vol 21 (26) ◽  
pp. 14186-14194 ◽  
Author(s):  
Hongwei Li ◽  
Alexander Kamasah ◽  
Arthur G. Suits

Direct rebound dynamics are revealed for bimolecular reaction of the ground state O(3P) atom with propanol isomers, involving the post transition state long-range dipole–dipole interaction between the dipolar OH and hydroxypropyl radicals.


ChemPhysChem ◽  
2021 ◽  
Author(s):  
Alexander Mebel ◽  
Vladislav S. Krasnoukhov ◽  
Valeriy N. Azyazov ◽  
Srinivas Doddipatla ◽  
Zhenghai Yang ◽  
...  






1997 ◽  
Vol 30 (4) ◽  
pp. 1095-1100 ◽  
Author(s):  
J Rodrigo Parreira ◽  
O Bolina ◽  
J Fernando Perez


Author(s):  
Ik-Hwan Um ◽  
Seungjae Kim

Second-order rate constants (kN) for reactions of p-nitrophenyl acetate (1) and S-p-nitrophenyl thioacetate (2) with OH‒ have been measured spectrophotometrically in DMSO-H2O mixtures of varying compositions at 25.0 ± 0.1 oC. The kN value increases from 11.6 to 32,800 M‒1s‒1 for the reactions of 1 and from 5.90 to 190,000 M‒1s‒1 for those of 2 as the reaction medium changes from H2O to 80 mol % DMSO, indicating that the effect of medium on reactivity is more remarkable for the reactions of 2 than for those of 1. Although 2 possesses a better leaving group than 1, the former is less reactive than the latter by a factor of 2 in H2O. This implies that expulsion of the leaving group is not advanced in the rate-determining transition state (TS), i.e., the reactions of 1 and 2 with OH‒ proceed through a stepwise mechanism, in which expulsion of the leaving group from the addition intermediate occurs after the rate-determining step (RDS). Addition of DMSO to H2O would destabilize OH‒ through electronic repulsion between the anion and the negative-dipole end in DMSO. However, destabilization of OH‒ in the ground state (GS) is not solely responsible for the remarkably enhanced reactivity upon addition of DMSO to the medium. The effect of medium on reactivity has been dissected into the GS and TS contributions through combination of the kinetic data with the transfer enthalpies (ΔΔHtr) from H2O to DMSO-H2O mixtures for OH‒ ion.



2015 ◽  
Vol 142 (4) ◽  
pp. 041101 ◽  
Author(s):  
Hou-Kuan Li ◽  
Po-Yu Tsai ◽  
Kai-Chan Hung ◽  
Toshio Kasai ◽  
King-Chuen Lin


1994 ◽  
Vol 50 (2) ◽  
pp. 1102-1105 ◽  
Author(s):  
B. D. Simons ◽  
B. L. Altshuler


1955 ◽  
Vol 33 (11) ◽  
pp. 668-678 ◽  
Author(s):  
F. R. Britton ◽  
D. T. W. Bean

Long range forces between two hydrogen molecules are calculated by using methods developed by Massey and Buckingham. Several terms omitted by them and a corrected numerical factor greatly change results for the van der Waals energy but do not affect their results for the static quadrupole–quadrupole energy. By using seven approximate ground state H2 wave functions information is obtained regarding the dependence of the van der Waals energy on the choice of wave function. The value of this energy averaged over all orientations of the molecular axes is found to be approximately −11.0 R−6 atomic units, a result in close agreement with semiempirical values.



Sign in / Sign up

Export Citation Format

Share Document