scholarly journals Acetate as a model for aspartate-based CXCR4 chemokine receptor binding of cobalt and nickel complexes of cross-bridged tetraazamacrocycles

2019 ◽  
Vol 48 (8) ◽  
pp. 2785-2801 ◽  
Author(s):  
Amy N. Cain ◽  
TaRynn N. Carder Freeman ◽  
Kimberly D. Roewe ◽  
David L. Cockriel ◽  
Travis R. Hasley ◽  
...  

Ni and Co complexes of cross-bridged vs. unbridged tetraazamacrocycle acetate complexes reveal preferences likely to impact CXCR4 antagonist interactions.

2021 ◽  
Author(s):  
Wenjing Yang ◽  
Yanhong Dong ◽  
Hongjian Sun ◽  
Xiaoyan Li

The synthesis and characterization of Fe, Co and Ni complexes supported by silylene ligands in recent ten years are summarized. Due to the decrease of electron cloud density on Si...


2003 ◽  
Vol 77 (15) ◽  
pp. 8588-8592 ◽  
Author(s):  
Louise M. C. Webb ◽  
Ian Clark-Lewis ◽  
Antonio Alcami

ABSTRACT Viruses encode proteins that disrupt chemokine responses. The murine gammaherpesvirus 68 gene M3 encodes a chemokine binding protein (vCKBP-3) which has no sequence similarity to chemokine receptors but inhibits chemokine receptor binding and activity. We have used a panel of CXCL8 analogs to identify the structural requirements for CXCL8 to bind to vCKBP-3 in a scintillation proximity assay. Our data suggest that vCKBP-3 acts by mimicking the binding of chemokine receptors to CXCL8.


2010 ◽  
Vol 84 (7) ◽  
pp. 3147-3161 ◽  
Author(s):  
Shi-Hua Xiang ◽  
Andrés Finzi ◽  
Beatriz Pacheco ◽  
Kevin Alexander ◽  
Wen Yuan ◽  
...  

ABSTRACT Human immunodeficiency virus (HIV-1) entry into cells is mediated by a trimeric complex consisting of noncovalently associated gp120 (exterior) and gp41 (transmembrane) envelope glycoproteins. The binding of gp120 to receptors on the target cell alters the gp120-gp41 relationship and activates the membrane-fusing capacity of gp41. Interaction of gp120 with the primary receptor, CD4, results in the exposure of the gp120 third variable (V3) loop, which contributes to binding the CCR5 or CXCR4 chemokine receptors. We show here that insertions in the V3 stem or polar substitutions in a conserved hydrophobic patch near the V3 tip result in decreased gp120-gp41 association (in the unliganded state) and decreased chemokine receptor binding (in the CD4-bound state). Subunit association and syncytium-forming ability of the envelope glycoproteins from primary HIV-1 isolates were disrupted more by V3 changes than those of laboratory-adapted HIV-1 envelope glycoproteins. Changes in the gp120 β2, β19, β20, and β21 strands, which evidence suggests are proximal to the V3 loop in unliganded gp120, also resulted in decreased gp120-gp41 association. Thus, a gp120 element composed of the V3 loop and adjacent beta strands contributes to quaternary interactions that stabilize the unliganded trimer. CD4 binding dismantles this element, altering the gp120-gp41 relationship and rendering the hydrophobic patch in the V3 tip available for chemokine receptor binding.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kentaro Suzuki ◽  
Takashi Ui ◽  
Akio Nagano ◽  
Akihiro Hino ◽  
Yasushi Arano

Abstract C-X-C chemokine receptor type 4 (CXCR4) constitutes a promising target for tumor diagnosis and therapy. Herein, we evaluate a new 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated CXCR4 antagonist derived from LY2510924, FRM001, and its metal complexes as CXCR4-targeting probes. FRM001 was synthesized by modifying the C-terminus of LY2510924 with maleimido-mono-amide-DOTA via a cysteine linker. FRM001 exhibited CXCR4-specific binding with an affinity similar to that of the parental LY2510924. The binding affinity of FRM001 remained unchanged after complexation with Ga, Lu, and Y. The internalization of 67Ga-FRM001 into the cells was hardly observed. In mice biodistribution studies, 67Ga-FRM001 exhibited high accumulation in the tumor and the liver with rapid elimination rates from the blood. The hepatic accumulation of 67Ga-FRM001 was preferentially and significantly reduced by co-injecting a CXCR4 antagonist, AMD3100. The C-terminal–modified LY2510924 would constitute a versatile scaffold to develop CXCR4-targeting probes or therapeutics for tumor imaging or therapy.


2017 ◽  
Vol 43 (11) ◽  
pp. 753-764 ◽  
Author(s):  
A. S. Burlov ◽  
V. G. Vlasenko ◽  
S. I. Levchenkov ◽  
E. V. Korshunova ◽  
S. A. Mashchenko ◽  
...  

2016 ◽  
Vol 21 ◽  
pp. 728-734 ◽  
Author(s):  
Yue Xu ◽  
Qiang Zhang ◽  
Wenrui Xue ◽  
Song Zeng ◽  
Zijian Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document