scholarly journals Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries

2018 ◽  
Vol 11 (5) ◽  
pp. 1271-1279 ◽  
Author(s):  
U.-H. Kim ◽  
D.-W. Jun ◽  
K.-J. Park ◽  
Q. Zhang ◽  
P. Kaghazchi ◽  
...  

W-doping produced the two-phase (Fm3̄m and R3̄m) structure which improved the cycling and thermal stability of the Ni-rich layered cathodes.

2017 ◽  
Vol 164 (7) ◽  
pp. A1552-A1558 ◽  
Author(s):  
Xiaoya Wang ◽  
Yiqing Huang ◽  
Dongsheng Ji ◽  
Fredrick Omenya ◽  
Khim Karki ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2271
Author(s):  
Chang Won Park ◽  
Jung-Hun Lee ◽  
Jae Kwon Seo ◽  
Weerawat To A Ran ◽  
Dongmok Whang ◽  
...  

Li-ion batteries (LIBs) employ porous, composite-type electrodes, where few weight percentages of carbonaceous conducting agents and polymeric binders are required to bestow electrodes with electrical conductivity and mechanical robustness. However, the use of such inactive materials has limited enhancements of battery performance in terms of energy density and safety. In this study, we introduced graphene/polyvinylidene fluoride (Gr/PVdF) composites in Ni-rich oxide cathodes for LIBs, replacing conventional conducting agents, carbon black (CB) nanoparticles. By using Gr/PVdF suspensions, we fabricated highly dense LiNi0.85Co0.15Al0.05O2 (NCA) cathodes having a uniform distribution of conductive Gr sheets without CB nanoparticles, which was confirmed by scanning spreading resistance microscopy mode using atomic force microscopy. At a high content of 99 wt.% NCA, good cycling stability was shown with significantly improved areal capacity (Qareal) and volumetric capacity (Qvol), relative to the CB/PVdF-containing NCA electrode with a commercial-level of electrode parameters. The NCA electrodes using 1 wt.% Gr/PVdF (0.9:0.1) delivered a high Qareal of ~3.7 mAh cm−2 (~19% increment) and a high Qvol of ~774 mAh cm−3 (~18% increment) at a current rate of 0.2 C, as compared to the conventional NCA electrode. Our results suggest a viable strategy for superseding conventional conducting agents (CB) and improving the electrochemical performance of Ni-rich cathodes for advanced LIBs.


2021 ◽  
Vol 9 (14) ◽  
pp. 9337-9346
Author(s):  
Erhong Song ◽  
Yifan Hu ◽  
Ruguang Ma ◽  
Yining Li ◽  
Xiaolin Zhao ◽  
...  

Li-rich layered cathodes based on Li2MnO3 have exhibited extraordinary promise to satisfy the rapidly increasing demand for high-energy density Li-ion batteries.


2021 ◽  
Vol 415 ◽  
pp. 128509
Author(s):  
Qihang Yu ◽  
Wu Tang ◽  
Yang Hu ◽  
Jian Gao ◽  
Ming Wang ◽  
...  

2019 ◽  
Vol 17 ◽  
pp. 136-142 ◽  
Author(s):  
Changmin Shi ◽  
Tianyang Wang ◽  
Xiangbiao Liao ◽  
Boyu Qie ◽  
Pengfei Yang ◽  
...  

2009 ◽  
Vol 191 (2) ◽  
pp. 575-581 ◽  
Author(s):  
H.F. Xiang ◽  
H. Wang ◽  
C.H. Chen ◽  
X.W. Ge ◽  
S. Guo ◽  
...  

2011 ◽  
Vol 282-283 ◽  
pp. 82-85
Author(s):  
Xiao Peng Ji ◽  
Xing Feng Guan ◽  
Zhen Hong Wang

Li-ion batteries have been widely used. However, the safety concern is always serious due to its high energy density. In order to improve the safety of the batteries, it is necessary to use the protection integration circuit. In this article, the concept for realizing the safety protection of Li-ion batteries during charging and discharging is described briefly. A circuit design using Seiko BMS chip S-8209 is purposed. Based on this, a simulation was performed and verified using Pspice program, which provides a theoretical basis for the circuit design.


Sign in / Sign up

Export Citation Format

Share Document