Rare earth oxide nanoparticles promote soil microbial antibiotic resistance by selectively enriching antibiotic resistance genes

2019 ◽  
Vol 6 (2) ◽  
pp. 456-466 ◽  
Author(s):  
Lin Qi ◽  
Yuan Ge ◽  
Tian Xia ◽  
Ji-Zheng He ◽  
Congcong Shen ◽  
...  

This study demonstrates that rare earth oxide nanoparticles can enhance soil microbial antibiotic resistance by inducing the enrichment and spread of antibiotic resistance genes in soil microbial communities.

Author(s):  
Hanpeng Liao ◽  
Xi Li ◽  
Qiue Yang ◽  
Yudan Bai ◽  
Peng Cui ◽  
...  

Abstract Herbicides are one of the most widely used chemicals in agriculture. While they are known to be harmful to non-target organisms, the effects of herbicides on the composition and functioning of soil microbial communities remain unclear. Here we show that application of three widely used herbicides—glyphosate, glufosinate and dicamba—increase the prevalence of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in soil microbiomes without clear changes in the abundance, diversity and composition of bacterial communities. Mechanistically, these results could be explained by a positive selection for more tolerant genotypes that acquired several mutations in previously well-characterized herbicide and antibiotic resistance genes. Moreover, herbicide exposure increased cell membrane permeability and conjugation frequency of multidrug resistance plasmids, promoting ARG movement between bacteria. A similar pattern was found in agricultural soils across eleven provinces in China, where herbicide application, and the levels of glyphosate residues in soils, were associated with increased ARG and MGE abundances relative to herbicide-free control sites. Together, our results show that herbicide application can enrich ARGs and MGEs by changing the genetic composition of soil microbiomes, potentially contributing to the global antimicrobial resistance problem in agricultural environments.


2017 ◽  
Vol 284 (1851) ◽  
pp. 20162233 ◽  
Author(s):  
Carl Wepking ◽  
Bethany Avera ◽  
Brian Badgley ◽  
John E. Barrett ◽  
Josh Franklin ◽  
...  

Intensifying livestock production to meet the demands of a growing global population coincides with increases in both the administration of veterinary antibiotics and manure inputs to soils. These trends have the potential to increase antibiotic resistance in soil microbial communities. The effect of maintaining increased antibiotic resistance on soil microbial communities and the ecosystem processes they regulate is unknown. We compare soil microbial communities from paired reference and dairy manure-exposed sites across the USA. Given that manure exposure has been shown to elicit increased antibiotic resistance in soil microbial communities, we expect that manure-exposed sites will exhibit (i) compositionally different soil microbial communities, with shifts toward taxa known to exhibit resistance; (ii) greater abundance of antibiotic resistance genes; and (iii) corresponding maintenance of antibiotic resistance would lead to decreased microbial efficiency. We found that bacterial and fungal communities differed between reference and manure-exposed sites. Additionally, the β-lactam resistance gene ampC was 5.2-fold greater under manure exposure, potentially due to the use of cephalosporin antibiotics in dairy herds. Finally, ampC abundance was positively correlated with indicators of microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under manure exposure. These findings demonstrate that the maintenance of antibiotic resistance associated with manure inputs alters soil microbial communities and ecosystem function.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 230
Author(s):  
Shan Wan ◽  
Min Xia ◽  
Jie Tao ◽  
Yanjun Pang ◽  
Fugen Yu ◽  
...  

In this study, we used a metagenomic approach to analyze microbial communities, antibiotic resistance gene diversity, and human pathogenic bacterium composition in two typical landfills in China. Results showed that the phyla Proteobacteria, Bacteroidetes, and Actinobacteria were predominant in the two landfills, and archaea and fungi were also detected. The genera Methanoculleus, Lysobacter, and Pseudomonas were predominantly present in all samples. sul2, sul1, tetX, and adeF were the four most abundant antibiotic resistance genes. Sixty-nine bacterial pathogens were identified from the two landfills, with Klebsiella pneumoniae, Bordetella pertussis, Pseudomonas aeruginosa, and Bacillus cereus as the major pathogenic microorganisms, indicating the existence of potential environmental risk in landfills. In addition, KEGG pathway analysis indicated the presence of antibiotic resistance genes typically associated with human antibiotic resistance bacterial strains. These results provide insights into the risk of pathogens in landfills, which is important for controlling the potential secondary transmission of pathogens and reducing workers’ health risk during landfill excavation.


2019 ◽  
Vol 10 ◽  
Author(s):  
Caroline Stéphanie Achard ◽  
Véronique Dupouy ◽  
Suzanne Siviglia ◽  
Nathalie Arpaillange ◽  
Laurent Cauquil ◽  
...  

2016 ◽  
Vol 50 (21) ◽  
pp. 11481-11490 ◽  
Author(s):  
Yuanqing Chao ◽  
Wenshen Liu ◽  
Yanmei Chen ◽  
Wenhui Chen ◽  
Lihua Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document