scholarly journals Vertically aligned carbon nanotubes: production and applications for environmental sustainability

2018 ◽  
Vol 20 (23) ◽  
pp. 5245-5260 ◽  
Author(s):  
Wenbo Shi ◽  
Desiree L. Plata

Incorporate green chemistry principles into vertically aligned carbon nanotube production and leverage their properties to maximize environmental benefits.

2014 ◽  
Vol 5 ◽  
pp. 1575-1579 ◽  
Author(s):  
Christoph Nick ◽  
Sandeep Yadav ◽  
Ravi Joshi ◽  
Christiane Thielemann ◽  
Jörg J Schneider

The growth of cortical neurons on three dimensional structures of spatially defined (structured) randomly oriented, as well as on vertically aligned, carbon nanotubes (CNT) is studied. Cortical neurons are attracted towards both types of CNT nano-architectures. For both, neurons form clusters in close vicinity to the CNT structures whereupon the randomly oriented CNTs are more closely colonised than the CNT pillars. Neurons develop communication paths via neurites on both nanoarchitectures. These neuron cells attach preferentially on the CNT sidewalls of the vertically aligned CNT architecture instead than onto the tips of the individual CNT pillars.


RSC Advances ◽  
2014 ◽  
Vol 4 (89) ◽  
pp. 48310-48316 ◽  
Author(s):  
Wan-Sun Kim ◽  
Gi-Ja Lee ◽  
Je-Hwang Ryu ◽  
KyuChang Park ◽  
Hun-Kuk Park

We evaluated the use of flexible biosensors based on Ni-coordinated, vertically aligned carbon nanotubes on a flexible graphite substrate (Ni/VCNTs/G) for the nonenzymatic electrochemical detection of glucose.


RSC Advances ◽  
2016 ◽  
Vol 6 (72) ◽  
pp. 67685-67692 ◽  
Author(s):  
Piyush Jagtap ◽  
Amit Kumar ◽  
Praveen Kumar

Carbon nanotube forests (CNTFs) are porous ensembles of vertically aligned carbon nanotubes, exhibiting excellent reversible compressibility and electric field tunable stress–strain, creep, and viscoelastic responses.


2007 ◽  
Vol 1018 ◽  
Author(s):  
Zhengchun Liu ◽  
Sang Hwui Lee ◽  
Navdeep Bajwa ◽  
Lijie Ci ◽  
Swastik Kar ◽  
...  

AbstractWe report on a method for direct measurement of site density of vertically-aligned carbon nanotubes (CNTs). Site density is an important parameter of vertically-aligned carbon nanotube forests for various applications. By freezing the CNT forests in a polymer matrix and exposing the CNT ends, we obtained the site density of vertically aligned multi-walled CNTs through SEM observation and particle counting. Site densities of multi-walled CNTs grown by two different CVD processes, ferrocene/xylene process and Fe-Al/ethylene process, were measured to be ∼10 tubes/Ým2 and ∼53 tubes/Ým2, respectively. The results of site density distributions indicate non-uniform growth of carbon nanotubes at the micrometer scale in both processes.


2003 ◽  
Vol 772 ◽  
Author(s):  
Masakazu Muroyama ◽  
Kazuto Kimura ◽  
Takao Yagi ◽  
Ichiro Saito

AbstractA carbon nanotube triode using Helicon Plasma-enhanced CVD with electroplated NiCo catalyst has been successfully fabricated. Isolated NiCo based metal catalyst was deposited at the bottom of the cathode wells by electroplating methods to control the density of carbon nanotubes and also reduce the activation energy of its growth. Helicon Plasma-enhanced CVD (HPECVD) has been used to deposit nanotubes at 400°C. Vertically aligned carbon nanotubes were then grown selectively on the electroplated Ni catalyst. Field emission measurements were performed with a triode structure. At a cathode to anode gap of 1.1mm, the turn on voltage for the gate was 170V.


2013 ◽  
Vol 3 (2) ◽  
pp. 155-165 ◽  
Author(s):  
Teresa C.O. Marsi ◽  
Marcus A.F. Corat ◽  
Mirian M. Machado ◽  
Evaldo J. Corat ◽  
Fernanda R. Marciano ◽  
...  

2015 ◽  
Vol 21 (S4) ◽  
pp. 60-65 ◽  
Author(s):  
Alexandr Knápek ◽  
Tomáš Radlička ◽  
Stanislav Krátký

AbstractThis paper deals with an optimization of a field-emission structure concept based on vertically aligned carbon nanotubes (CNT). A design concept for a fabrication method for a gate structure based on electron beam lithography is reviewed in the first part of the paper. A single carbon nanotube is grown by the PECVD method inside the gate structure. Calculations and simulations that help determine gate structure proportions in order to obtain the best possible electron reduced brightness and to predict the cathode's electric behavior are also essential parts of this study.


Sign in / Sign up

Export Citation Format

Share Document