Construction of MOF-derived hollow Ni–Zn–Co–S nanosword arrays as binder-free electrodes for asymmetric supercapacitors with high energy density

Nanoscale ◽  
2018 ◽  
Vol 10 (29) ◽  
pp. 14171-14181 ◽  
Author(s):  
Youzhang Huang ◽  
Liang Quan ◽  
Tianqing Liu ◽  
Qidi Chen ◽  
Daoping Cai ◽  
...  

Mesoporous and hollow Ni–Zn–Co–S nanosword arrays (NSAs) have been successfully grown on nickel foam (NF) through a simple two-step method, which would hold great promise for high-performance supercapacitors.

2015 ◽  
Vol 3 (23) ◽  
pp. 12530-12538 ◽  
Author(s):  
Yang Bai ◽  
Weiqi Wang ◽  
Ranran Wang ◽  
Jing Sun ◽  
Lian Gao

Graphene facilitates the formation of a 3D porous binder-free electrode with controllable morphology for high energy density supercapacitors.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1143 ◽  
Author(s):  
Anil Yedluri ◽  
Tarugu Anitha ◽  
Hee-Je Kim

Hierarchical NiMoO4/NiMoO4 nanoflowers were fabricated on highly conductive flexible nickel foam (NF) substrates using a facile hydrothermal method to achieve rapid charge-discharge ability, high energy density, long cycling lifespan, and higher flexibility for high-performance supercapacitor electrode materials. The synthesized composite electrode material, NF/NiMoO4/NiMoO4 with a nanoball-like NF/NiMoO4 structure on a NiMoO4 surface over a NF substrate, formed a three-dimensional interconnected porous network for high-performance electrodes. The novel NF/NiMoO4/NiMoO4 nanoflowers not only enhanced the large surface area and increased the electrochemical activity, but also provided an enhanced rapid ion diffusion path and reduced the charge transfer resistance of the entire electrode effectively. The NF/NiMoO4/NiMoO4 composite exhibited significantly improved supercapacitor performance in terms of a sustained cycling life, high specific capacitance, rapid charge-discharge capability, high energy density, and good rate capability. Electrochemical analysis of the NF/NiMoO4/NiMoO4 nanoflowers fabricated on the NF substrate revealed ultra-high electrochemical performance with a high specific capacitance of 2121 F g−1 at 12 mA g−1 in a 3 M KOH electrolyte and 98.7% capacitance retention after 3000 cycles at 14 mA g−1. This performance was superior to the NF/NiMoO4 nanoball electrode (1672 F g−1 at 12 mA g−1 and capacitance retention 93.4% cycles). Most importantly, the SC (NF/NiMoO4/NiMoO4) device displayed a maximum energy density of 47.13 W h kg−1, which was significantly higher than that of NF/NiMoO4 (37.1 W h kg−1). Overall, the NF/NiMoO4/NiMoO4 composite is a suitable material for supercapacitor applications.


2020 ◽  
Vol 49 (15) ◽  
pp. 4956-4966 ◽  
Author(s):  
Jingbo Li ◽  
Yu Liu ◽  
Wei Cao ◽  
Nan Chen

A rapid in situ method was employed to synthesize the β-Ni(OH)2@NF integrated electrode for a high performance ASC device.


2018 ◽  
Vol 6 (4) ◽  
pp. 1802-1808 ◽  
Author(s):  
Ke Li ◽  
Yanshan Huang ◽  
Jingjing Liu ◽  
Mansoor Sarfraz ◽  
Phillips O. Agboola ◽  
...  

Three-dimensional graphene frameworks enable the development of stretchable asymmetric supercapacitors with a record high energy density of 77.8 W h kg−1, and also excellent stretchability and superior cycling stability.


2018 ◽  
Vol 6 (19) ◽  
pp. 9109-9115 ◽  
Author(s):  
Xiaoya Chang ◽  
Lei Zang ◽  
Song Liu ◽  
Mengying Wang ◽  
Huinan Guo ◽  
...  

Yolk–shell ZnCo2O4 with in situ formed carbon shows great potential for supercapacitors, which delivers high energy density and power density.


2019 ◽  
Vol 6 (8) ◽  
pp. 2061-2070 ◽  
Author(s):  
Jai Bhagwan ◽  
Bhimanaboina Ramulu ◽  
Jae Su Yu

The investigation of nanomaterials with improved energy storage performance is essential in the development of high energy density supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document