Rapid in situ growth of β-Ni(OH)2 nanosheet arrays on nickel foam as an integrated electrode for supercapacitors exhibiting high energy density

2020 ◽  
Vol 49 (15) ◽  
pp. 4956-4966 ◽  
Author(s):  
Jingbo Li ◽  
Yu Liu ◽  
Wei Cao ◽  
Nan Chen

A rapid in situ method was employed to synthesize the β-Ni(OH)2@NF integrated electrode for a high performance ASC device.

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1143 ◽  
Author(s):  
Anil Yedluri ◽  
Tarugu Anitha ◽  
Hee-Je Kim

Hierarchical NiMoO4/NiMoO4 nanoflowers were fabricated on highly conductive flexible nickel foam (NF) substrates using a facile hydrothermal method to achieve rapid charge-discharge ability, high energy density, long cycling lifespan, and higher flexibility for high-performance supercapacitor electrode materials. The synthesized composite electrode material, NF/NiMoO4/NiMoO4 with a nanoball-like NF/NiMoO4 structure on a NiMoO4 surface over a NF substrate, formed a three-dimensional interconnected porous network for high-performance electrodes. The novel NF/NiMoO4/NiMoO4 nanoflowers not only enhanced the large surface area and increased the electrochemical activity, but also provided an enhanced rapid ion diffusion path and reduced the charge transfer resistance of the entire electrode effectively. The NF/NiMoO4/NiMoO4 composite exhibited significantly improved supercapacitor performance in terms of a sustained cycling life, high specific capacitance, rapid charge-discharge capability, high energy density, and good rate capability. Electrochemical analysis of the NF/NiMoO4/NiMoO4 nanoflowers fabricated on the NF substrate revealed ultra-high electrochemical performance with a high specific capacitance of 2121 F g−1 at 12 mA g−1 in a 3 M KOH electrolyte and 98.7% capacitance retention after 3000 cycles at 14 mA g−1. This performance was superior to the NF/NiMoO4 nanoball electrode (1672 F g−1 at 12 mA g−1 and capacitance retention 93.4% cycles). Most importantly, the SC (NF/NiMoO4/NiMoO4) device displayed a maximum energy density of 47.13 W h kg−1, which was significantly higher than that of NF/NiMoO4 (37.1 W h kg−1). Overall, the NF/NiMoO4/NiMoO4 composite is a suitable material for supercapacitor applications.


2018 ◽  
Vol 6 (19) ◽  
pp. 9109-9115 ◽  
Author(s):  
Xiaoya Chang ◽  
Lei Zang ◽  
Song Liu ◽  
Mengying Wang ◽  
Huinan Guo ◽  
...  

Yolk–shell ZnCo2O4 with in situ formed carbon shows great potential for supercapacitors, which delivers high energy density and power density.


2018 ◽  
Vol 47 (47) ◽  
pp. 17146-17152 ◽  
Author(s):  
Xiao Liang ◽  
Qiufan Wang ◽  
Yun Ma ◽  
Daohong Zhang

A two-ply CNT yarn asymmetric supercapacitor was fabricated by assembling a CuCo2O4 nanowire positive electrode and a PPy nanoparticle negative electrode. The full cell exhibits a high specific capacitance of 59.55 mF cm−2 and a high energy density of 0.02 mW h cm−2.


2016 ◽  
Vol 4 (15) ◽  
pp. 5669-5677 ◽  
Author(s):  
Lengyuan Niu ◽  
Yidan Wang ◽  
Fengping Ruan ◽  
Cheng Shen ◽  
Shen Shan ◽  
...  

A NiCo2S4@Ni3V2O8//AC asymmetric supercapacitor was successfully fabricated and it can deliver both high energy density and high power density.


RSC Advances ◽  
2015 ◽  
Vol 5 (116) ◽  
pp. 95488-95494 ◽  
Author(s):  
Haowen Meng ◽  
Hongyan Yang ◽  
Xiaohui Yu ◽  
Peng Dou ◽  
Daqian Ma ◽  
...  

Transition metals have attracted much attention due to their high energy density in lithium-ion batteries (LIBs).


2015 ◽  
Vol 3 (32) ◽  
pp. 16849-16859 ◽  
Author(s):  
Afshin Pendashteh ◽  
Jesus Palma ◽  
Marc Anderson ◽  
Rebeca Marcilla

Nanostructured porous wires of FeCo2O4 supported on nickel foam were synthesized and employed as binder/additive-free electrodes in asymmetric aqueous supercapacitors, showing a high energy density of 23 Wh kg−1.


2015 ◽  
Vol 3 (23) ◽  
pp. 12530-12538 ◽  
Author(s):  
Yang Bai ◽  
Weiqi Wang ◽  
Ranran Wang ◽  
Jing Sun ◽  
Lian Gao

Graphene facilitates the formation of a 3D porous binder-free electrode with controllable morphology for high energy density supercapacitors.


2016 ◽  
Vol 4 (10) ◽  
pp. 3828-3834 ◽  
Author(s):  
Qiufan Wang ◽  
Yunlong Wu ◽  
Ting Li ◽  
Daohong Zhang ◽  
Menghe Miao ◽  
...  

A two-ply yarn supercapacitor fabricated from Pt/CNT@PANI nanowire composite electrodes exhibits a high specific capacitance of 91.67 mF cm−2and a high energy density of 12.68 μW h cm−2.


Nanoscale ◽  
2018 ◽  
Vol 10 (29) ◽  
pp. 14171-14181 ◽  
Author(s):  
Youzhang Huang ◽  
Liang Quan ◽  
Tianqing Liu ◽  
Qidi Chen ◽  
Daoping Cai ◽  
...  

Mesoporous and hollow Ni–Zn–Co–S nanosword arrays (NSAs) have been successfully grown on nickel foam (NF) through a simple two-step method, which would hold great promise for high-performance supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document