scholarly journals Removal of tetracycline by aerobic granular sludge and its bacterial community dynamics in SBR

RSC Advances ◽  
2018 ◽  
Vol 8 (33) ◽  
pp. 18284-18293 ◽  
Author(s):  
Xiaochun Wang ◽  
Zhonglin Chen ◽  
Jing Kang ◽  
Xia Zhao ◽  
Jimin Shen

A lab-scale aerobic granular sludge sequencing batch reactor was introduced to explore the performance, formation and microbial succession of granular sludge for effectively removing tetracycline.

2015 ◽  
Vol 73 (1) ◽  
pp. 95-101 ◽  
Author(s):  
Guanglei Qiu ◽  
Sin-Yi Neo ◽  
Yen-Peng Ting

The effects of CeO2 nanoparticles (NPs) on the system performance and the bacterial community dynamics in a sequencing batch reactor (SBR) were investigated, along with the fate and removal of CeO2 NPs within the SBR. Significant impact was observed on nitrification; NH4+-N removal efficiency decreased from almost 100% to around 70% after 6 days of continuous exposure to 1.0 mg/L of CeO2 NPs, followed by a gradual recovery until a stable value of around 90% after 20 days. Additionally, CeO2 NPs also led to a significant increase in the protein content in the soluble microbial products, showing the disruptive effects of CeO2 NPs on the extracellular polymeric substance matrix and related activated sludge structure. Denaturing gradient gel electrophoresis analysis showed remarkable changes in the bacterial community structure in the activated sludge after exposure to CeO2 NPs. CeO2 NPs were effectively removed in the SBR mainly via sorption onto the sludge. However, the removal efficiency decreased from 95 to 80% over 30 days. Mass balance evaluation showed that up to 50% of the NPs were accumulated within the activated sludge and were removed with the waste sludge.


2016 ◽  
Vol 32 (5) ◽  
pp. 1212-1221 ◽  
Author(s):  
A. Fra-Vázquez ◽  
N. Morales ◽  
M. Figueroa ◽  
A. Val del Río ◽  
L. Regueiro ◽  
...  

2009 ◽  
Vol 60 (4) ◽  
pp. 1049-1054 ◽  
Author(s):  
S. López–Palau ◽  
J. Dosta ◽  
J. Mata-Álvarez

Aerobic granular sludge was cultivated in a sequencing batch reactor (SBR) in order to remove the organic matter present in winery wastewater. The formation of granules was performed using a synthetic substrate. The selection parameter was the settling time, as well as the alternation of feast-famine periods, the air velocity and the height/diameter ratio of the reactor. After 10 days of operation under these conditions, the first aggregates could be observed. Filamentous bacteria were still present in the reactor but they disappeared progressively. During the start-up, COD loading was increased from 2.7 to 22.5 kg COD/(m3 day) in order to obtain a feast period between 30 and 60 minutes. At this point, granules were quite round, with a particle diameter between 3.0 and 4.0 mm and an average density of 6 g L−1. After 120 days of operation, synthetic media was replaced by real winery wastewater, with a COD loading of 6 kg COD/(m3 day). The decrease of the organic load implied a reduction of the aggregate diameter and a density increase up to 13.2 g L−1. The effluent was free of organic matter and the solids concentration in the reactor reached 6 g VSS L−1.


RSC Advances ◽  
2016 ◽  
Vol 6 (18) ◽  
pp. 15201-15209 ◽  
Author(s):  
Fanghui Yuan ◽  
Chao Song ◽  
Xuefei Sun ◽  
Linrui Tan ◽  
Yunkun Wang ◽  
...  

BioSeNPs, which were produced by aerobic granular sludge in a sequencing batch reactor, could be used to remove cadmium from aqueous solution with high efficiency.


Sign in / Sign up

Export Citation Format

Share Document