High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification

2018 ◽  
Vol 6 (10) ◽  
pp. 4271-4278 ◽  
Author(s):  
Pengkun Li ◽  
Jinguo Zhu ◽  
Albertus D. Handoko ◽  
Ruifeng Zhang ◽  
Haotian Wang ◽  
...  

Electrocatalysis has the potential to become a more sustainable approach to generate hydrogen as a clean energy source and chemical feedstock.

2022 ◽  
Author(s):  
Hau Quoc Pham ◽  
Tai Thien Huynh

With the rising energy demand and growing environmental problems, the produced hydrogen from electrolyzing water has emerged as the most sustainable and clean energy source that can alter to fossil...


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 2
Author(s):  
Xingyuan Gao ◽  
Huilin Deng ◽  
Qiuping Dai ◽  
Quanlong Zeng ◽  
Shuxian Qiu ◽  
...  

As a sustainable and clean energy source, hydrogen can be generated by electrolytic water splitting (i.e., a hydrogen evolution reaction, HER). Compared with conventional noble metal catalysts (e.g., Pt), Mo based materials have been deemed as a promising alternative, with a relatively low cost and comparable catalytic performances. In this review, we demonstrate a comprehensive summary of various Mo based materials, such as MoO2, MoS2 and Mo2C. Moreover, state of the art designs of the catalyst structures are presented, to improve the activity and stability for hydrogen evolution, including Mo based carbon composites, heteroatom doping and heterostructure construction. The structure–performance relationships relating to the number of active sites, electron/ion conductivity, H/H2O binding and activation energy, as well as hydrophilicity, are discussed in depth. Finally, conclusive remarks and future works are proposed.


Nanoscale ◽  
2021 ◽  
Author(s):  
Wenjun He ◽  
Jianing Cheng ◽  
Yaohui Gao ◽  
Caichi Liu ◽  
Jianling Zhao ◽  
...  

The development of earth-abundant transition metal sulfides electrocatalysts with excellent activity and stability toward alkaline hydrogen evolution reaction (HER) is critical but challenging. Iron-based sulfides are favored due to their...


Nanoscale ◽  
2021 ◽  
Author(s):  
Albert Bruix ◽  
Jeppe Vang Lauritsen ◽  
Bjork Hammer

Nanomaterials based on MoS2 and related transition metal dichalcogenides are remarkably versatile; MoS2 nanoparticles are proven catalysts for processes such as hydrodesulphurization and the hydrogen evolution reaction, and transition metal...


Sign in / Sign up

Export Citation Format

Share Document