metal substrates
Recently Published Documents


TOTAL DOCUMENTS

972
(FIVE YEARS 106)

H-INDEX

55
(FIVE YEARS 6)

Author(s):  
Yuling Yin ◽  
Vladislav Gladkikh ◽  
Pai Li ◽  
Leining Zhang ◽  
Qinghong Yuan ◽  
...  

Author(s):  
Abhishek Kumar Adak ◽  
Devina Sharma ◽  
Shobhana Narasimhan

Abstract We have performed density functional theory calculations to study blue phosphorene and black phosphorene on metal substrates. The substrates considered are the (111) and (110) surfaces of Al, Cu, Ag, Ir, Pd, Pt and Au and the (0001) and (10$\bar{1}$0) surfaces of Zr and Sc. The formation energy $E_{\rm F}$ is negative (energetically favorable) for all 36 combinations of overlayer and substrate. By comparing values of $\Delta{\Omega}$, the change in free energy per unit area, as well as the overlayer-substrate binding energy $E_{\rm b}$, we identify that Ag(111), Al(110), Cu(111), Cu(110) and possibly Au(110) may be especially suitable substrates for the synthesis and subsequent exfoliation of blue phosphorene, and the Ag(110) and Al(111) substrates for the synthesis of black phosphorene. However, these conclusions are drawn assuming the source of P atoms is bulk phosphorus, and can alter upon changing synthesis conditions (chemical potential of phosphorus). Thus, when the source of phosphorus atoms is P$_4$, blue phosphorene is favored only over Pt(111). We find that for all combinations of overlayer and substrate, the charge transfer per bond can be captured by the universal descriptor $\mathcal{D} = \Delta \chi/\Delta \mathcal{R}$, where $\Delta \chi$ and $\Delta \mathcal{R}$ are, respectively, the differences in electronegativity and atomic size between phosphorus and the substrate metal.


2021 ◽  
Vol 11 (20) ◽  
pp. 9529
Author(s):  
Chaminda P. Nawarathne ◽  
Abdul Hoque ◽  
Chethani K. Ruhunage ◽  
Connor E. Rahm ◽  
Noe T. Alvarez

The exceptional physical properties of carbon nanotubes (CNTs) have the potential to transform materials science and various industrial applications. However, to exploit their unique properties in carbon-based electronics, CNTs regularly need to be chemically interfaced with metals. Although CNTs can be directly synthesized on metal substrates, this process typically requires temperatures above 350 °C, which is not compatible for many applications. Additionally, the CNTs employed here were highly densified, making them suitable as interconnecting materials for electronic applications. This paper reports a method for the chemical bonding of vertically aligned CNTs onto metal substrates that avoids the need for high temperatures and can be performed at temperatures as low as 80 °C. Open-ended CNTs were directly bonded onto Cu and Pt substrates that had been functionalized using diazonium radical reactive species, thus allowing bond formation with the open-ended CNTs. Careful control during grafting of the organic species onto the metal substrates resulted in functional group uniformity, as demonstrated by FT-IR analysis. Scanning electron microscopy images confirmed the formation of direct connections between the vertically aligned CNTs and the metal substrates. Furthermore, electrochemical characterization and application as a sensor revealed the nature of the bonding between the CNTs and the metal substrates.


Sign in / Sign up

Export Citation Format

Share Document