Hierarchical waxberry-like LiNi0.5Mn1.5O4 as an advanced cathode material for lithium-ion batteries with a superior rate capability and long-term cyclability

2018 ◽  
Vol 6 (29) ◽  
pp. 14155-14161 ◽  
Author(s):  
Weiwei Sun ◽  
Yujie Li ◽  
Yumin Liu ◽  
Qingpeng Guo ◽  
Shiqiang Luo ◽  
...  

In this work, we have successfully synthesized hierarchically porous waxberry-like LiNi0.5Mn1.5O4 spheres comprising interpenetrating nanograins, and this material demonstrates an excellent rate capability and long-term cyclic stability.

2015 ◽  
Vol 3 (27) ◽  
pp. 14291-14297 ◽  
Author(s):  
Yi-di Zhang ◽  
Yi Li ◽  
Xiao-qing Niu ◽  
Dong-huang Wang ◽  
Ding Zhou ◽  
...  

A novel peanut-like hierarchical micro/nano-lithium-rich cathode material with superior cyclic stability and enhanced rate capability is synthesized via a solvothermal method.


2017 ◽  
Vol 5 (30) ◽  
pp. 15669-15675 ◽  
Author(s):  
Zhen Chen ◽  
Dongliang Chao ◽  
Jilei Liu ◽  
Mark Copley ◽  
Jianyi Lin ◽  
...  

In this work is reported the successful synthesis of 1D nanobar-like LiNi0.4Co0.2Mn0.4O2 (N-NCM), preferentially exposing the {010} electrochemically active facets.


RSC Advances ◽  
2015 ◽  
Vol 5 (94) ◽  
pp. 77324-77331 ◽  
Author(s):  
Qingliang Xie ◽  
Chenhao Zhao ◽  
Zhibiao Hu ◽  
Qi Huang ◽  
Cheng Chen ◽  
...  

Layered Li[Li0.2Mn0.56Ni0.16Co0.08]O2 porous microspheres have been successfully synthesized by a urea combustion method, and then coated with appropriate amount of LaPO4via a facile chemical precipitation route.


2019 ◽  
Vol 953 ◽  
pp. 121-126
Author(s):  
Zhe Chen ◽  
Quan Fang Chen ◽  
Sha Ne Zhang ◽  
Guo Dong Xu ◽  
Mao You Lin ◽  
...  

High energy density and rechargeable lithium ion batteries are attracting widely interest in renewable energy fields. The preparation of the high performance materials for electrodes has been regarded as the most challenging and innovative aspect. By utilizing a facile combustion synthesis method, pure nanostructure LiNi0.5Mn1.5O4 cathode material for lithium ion batteries were successfully fabricated. The crystal phase of the samples were characterized by X-Ray Diffraction, and micro-morphology as well as electrochemistry properties were also evaluated using FE-SEM, electrochemical charge-discharge test. The result shows the fabricated LiNi0.5Mn1.5O4 cathode materials had outstanding crystallinity and near-spherical morphologies. That obtained LiNi0.5Mn1.5O4 samples delivered an initial discharge capacity of 137.2 mAhg-1 at the 0.1 C together with excellent cycling stability and rate capability as positive electrodes in a lithium cell. The superior electrochemical performance of the as-prepared samples are owing to nanostructure particles possessing the shorter diffusion path for Li+ transport, and the nanostructure lead to large contact area to effectively improve the charge/discharge properties and the rate property. It is demonstrated that the as-prepared nanostructure LiNi0.5Mn1.5O4 samples have potential as cathode materials of lithium-ion battery for future new energy vehicles.


2020 ◽  
Vol 7 (14) ◽  
pp. 2651-2659 ◽  
Author(s):  
Shuting Sun ◽  
Ruhong Li ◽  
Wenhui Wang ◽  
Deying Mu ◽  
Jianchao Liu ◽  
...  

MWCNTs/Sn4P3@C with a coaxial cable-like structure demonstrates remarkable cycling stability and rate capability.


2019 ◽  
Vol 7 (38) ◽  
pp. 21766-21773 ◽  
Author(s):  
Shixue Zhang ◽  
Huan Liu ◽  
Bin Cao ◽  
Qizhen Zhu ◽  
Peng Zhang ◽  
...  

A Ti3C2Tx/CNTs@P nanohybrid with stable Ti–O–P bonds is simply fabricated, which exhibits high capacity, excellent long-term cycling stability and superior rate capability as an anode for lithium ion batteries.


RSC Advances ◽  
2018 ◽  
Vol 8 (51) ◽  
pp. 28978-28986 ◽  
Author(s):  
Yifang Wu ◽  
Shaokun Chong ◽  
Yongning Liu ◽  
ShengWu Guo ◽  
Pengwei Wang ◽  
...  

C18BF15 was first adopted as a boron source and has demonstrated its clear modification effects, as shown by the high rate capability.


Ionics ◽  
2020 ◽  
Vol 27 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Chao Chen ◽  
Quanqi Chen ◽  
Yanwei Li ◽  
Jianwen Yang ◽  
Bin Huang ◽  
...  

2015 ◽  
Vol 3 (9) ◽  
pp. 5054-5059 ◽  
Author(s):  
Chang Yu ◽  
Meng Chen ◽  
Xiaoju Li ◽  
Changtai Zhao ◽  
Lianlong He ◽  
...  

Hierarchically porous carbon architectures composed of a micro-sized porous carbon sphere matrix embedded with hollow nanocapsules are configured, demonstrating a large capacity and an ultra-high rate capability in lithium ion batteries.


Sign in / Sign up

Export Citation Format

Share Document