Preparation and Characterization of High-Voltage Cathode Material LiNi0.5Mn1.5O4 for Lithium Ion Batteries

2019 ◽  
Vol 953 ◽  
pp. 121-126
Author(s):  
Zhe Chen ◽  
Quan Fang Chen ◽  
Sha Ne Zhang ◽  
Guo Dong Xu ◽  
Mao You Lin ◽  
...  

High energy density and rechargeable lithium ion batteries are attracting widely interest in renewable energy fields. The preparation of the high performance materials for electrodes has been regarded as the most challenging and innovative aspect. By utilizing a facile combustion synthesis method, pure nanostructure LiNi0.5Mn1.5O4 cathode material for lithium ion batteries were successfully fabricated. The crystal phase of the samples were characterized by X-Ray Diffraction, and micro-morphology as well as electrochemistry properties were also evaluated using FE-SEM, electrochemical charge-discharge test. The result shows the fabricated LiNi0.5Mn1.5O4 cathode materials had outstanding crystallinity and near-spherical morphologies. That obtained LiNi0.5Mn1.5O4 samples delivered an initial discharge capacity of 137.2 mAhg-1 at the 0.1 C together with excellent cycling stability and rate capability as positive electrodes in a lithium cell. The superior electrochemical performance of the as-prepared samples are owing to nanostructure particles possessing the shorter diffusion path for Li+ transport, and the nanostructure lead to large contact area to effectively improve the charge/discharge properties and the rate property. It is demonstrated that the as-prepared nanostructure LiNi0.5Mn1.5O4 samples have potential as cathode materials of lithium-ion battery for future new energy vehicles.

Author(s):  
Li Yang ◽  
Wentao Deng ◽  
Wei Xu ◽  
Ye Tian ◽  
Anni Wang ◽  
...  

As a promising cathode material for high performance lithium ion batteries, olivine LiMnxFe1-xPO4 (LMFP) combines the high safety of LiFePO4 and the high energy density of LiMnPO4. However, there are...


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1602 ◽  
Author(s):  
Jun-Ping Hu ◽  
Hang Sheng ◽  
Qi Deng ◽  
Qiang Ma ◽  
Jun Liu ◽  
...  

LiNixCoyMnzO2 (LNCM)-layered materials are considered the most promising cathode for high-energy lithium ion batteries, but suffer from poor rate capability and short lifecycle. In addition, the LiNi1/3Co1/3Mn1/3O2 (NCM 111) is considered one of the most widely used LNCM cathodes because of its high energy density and good safety. Herein, a kind of NCM 111 with semi-closed structure was designed by controlling the amount of urea, which possesses high rate capability and long lifespan, exhibiting 140.9 mAh·g−1 at 0.85 A·g−1 and 114.3 mAh·g−1 at 1.70 A·g−1, respectively. The semi-closed structure is conducive to the infiltration of electrolytes and fast lithium ion-transfer inside the electrode material, thus improving the rate performance of the battery. Our work may provide an effective strategy for designing layered-cathode materials with high rate capability.


2019 ◽  
Vol 33 (08) ◽  
pp. 1950098 ◽  
Author(s):  
Jianjian Shi ◽  
Xiaoxing Chen ◽  
Chunyu Wang ◽  
Zhiguo Wang

Lithium-rich manganese-based layered oxides are of great interest as cathode materials for lithium ion batteries due to their high energy density. The voltage decay and capacity fading during prolonged charge/discharge cycling are the key obstacles for their practical usage. In this work, using density functional theory, we investigated the origin of the Ni surface segregation by calculating the defect formation energies of antisite defects, including Ni cation substituting a Li cation [Formula: see text] and pairs of Ni cation swapping with Li cation ([Formula: see text]–[Formula: see text]) in [Formula: see text], [Formula: see text] and [Formula: see text] to represent the Mn-rich, Mn–Ni equivalence and Ni-rich conditions, respectively. Results show that [Formula: see text]–[Formula: see text] defect is of energy favorable in Li-rich and Mn-rich layered oxide cathode. Al-doping is beneficial for improving the structure stability and preventing the surface segregation, thus Al-doping can improve cycle ability and rate capability of Li-rich and Mn-rich layered cathodes. This work provides deep insights for the design of layered cathode materials with both high capacity and voltage stability during cycling.


ChemInform ◽  
2012 ◽  
Vol 43 (33) ◽  
pp. no-no
Author(s):  
Zhao-Hui Wang ◽  
Li-Xia Yuan ◽  
Wu-Xing Zhang ◽  
Yun-Hui Huang

2013 ◽  
Vol 1 (44) ◽  
pp. 13742 ◽  
Author(s):  
Jingang Yang ◽  
Xiaolong Zhang ◽  
Xiaopeng Han ◽  
Fangyi Cheng ◽  
Zhanliang Tao ◽  
...  

2012 ◽  
Vol 532 ◽  
pp. 25-30 ◽  
Author(s):  
Zhao-Hui Wang ◽  
Li-Xia Yuan ◽  
Wu-Xing Zhang ◽  
Yun-Hui Huang

Author(s):  
Guozhong Liu ◽  
Weihong Wan ◽  
Jinsheng Cheng ◽  
Litianlun Xu ◽  
Zhihe Chen ◽  
...  

In this work, fluorinated graphene nanoscrolls (FGN) were synthesized via facile chemical methods under simple and mild conditions. Interestingly, the formation of the featured FGN was significantly solvent sensitive. Experimental results indicated that in the presence of aprotic solvent, for example, N,N dimethylformamide (DMF), the reaction system inclined to form the interesting FGN nanostructures. The structure and morphology of the prepared FGN were detailed characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) etc. The obtained FGN was used as a cathode material for primary lithium ion batteries with superior discharge specific capacity (eg. 979.3 mAhg-1), stable discharge platform and high energy density (eg. 2287.9 Wh kg-1), which fosters it a high density, low cost and durable candidate for cathode material for lithium ion batteries..


Nanoscale ◽  
2021 ◽  
Author(s):  
Cong Liu ◽  
Shuang Zhang ◽  
Yuanyuan Feng ◽  
Xiaowei Miao ◽  
Gang Yang ◽  
...  

In this work, Li1.12K0.05Mn0.57Ni0.24Nb0.02O2 (LMN-K/Nb) as a novel and high energy density cathode material is successfully synthesized and applied in lithium ion battery. Combining interlayer exchanging and elemental analysis, it...


Sign in / Sign up

Export Citation Format

Share Document