Rechargeable Na/Ni batteries based on the Ni(OH)2/NiOOH redox couple with high energy density and good cycling performance

2019 ◽  
Vol 7 (4) ◽  
pp. 1564-1573 ◽  
Author(s):  
Seungyoung Park ◽  
Ziyauddin Khan ◽  
Tae Joo Shin ◽  
Youngsik Kim ◽  
Hyunhyub Ko

Rechargeable battery systems that use Na-based anodes as alternatives to Li-ion batteries are highly desirable for grid-scale energy storage systems owing to the high abundance and low cost of Na.

2021 ◽  
Vol 415 ◽  
pp. 128509
Author(s):  
Qihang Yu ◽  
Wu Tang ◽  
Yang Hu ◽  
Jian Gao ◽  
Ming Wang ◽  
...  

Author(s):  
Rana Mohtadi

The ever-rising demands for energy dense electrochemical storage systems have been driving interests in beyond Li-ion batteries such as those based on lithium and magnesium metals. These high energy density batteries suffer from several challenges, several of which stem from the flammability/volatility of the electrolytes and/or instability of the electrolyte with either the negative, positive electrode or both. Recently, hydride-based electrolytes have been paving a path towards overcoming these issues. Namely, highly performing solid state electrolytes have been reported and several key challenges in multivalent batteries were overcome. In this review, the classes of hydride-based electrolytes reported for energy dense batteries are discussed. Future perspectives are presented to guide research directions in this field.


2017 ◽  
Vol 5 (41) ◽  
pp. 21898-21902 ◽  
Author(s):  
M. Freire ◽  
O. I. Lebedev ◽  
A. Maignan ◽  
C. Jordy ◽  
V. Pralong

Nowadays the energy storage challenge is to develop a low cost, ecofriendly, high energy density material, showing a reversible capacity higher than 250 mA h g−1.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1791
Author(s):  
Rana Mohtadi

The ever-rising demands for energy dense electrochemical storage systems have been driving interests in beyond Li-ion batteries such as those based on lithium and magnesium metals. These high energy density batteries suffer from several challenges, several of which stem from the flammability/volatility of the electrolytes and/or instability of the electrolytes with either the negative, positive electrode or both. Recently, hydride-based electrolytes have been paving the way towards overcoming these issues. Namely, highly performing solid-state electrolytes have been reported and several key challenges in multivalent batteries were overcome. In this review, the classes of hydride-based electrolytes reported for energy dense batteries are discussed. Future perspectives are presented to guide research directions in this field.


2021 ◽  
Vol 9 (14) ◽  
pp. 9337-9346
Author(s):  
Erhong Song ◽  
Yifan Hu ◽  
Ruguang Ma ◽  
Yining Li ◽  
Xiaolin Zhao ◽  
...  

Li-rich layered cathodes based on Li2MnO3 have exhibited extraordinary promise to satisfy the rapidly increasing demand for high-energy density Li-ion batteries.


2019 ◽  
Vol 17 ◽  
pp. 136-142 ◽  
Author(s):  
Changmin Shi ◽  
Tianyang Wang ◽  
Xiangbiao Liao ◽  
Boyu Qie ◽  
Pengfei Yang ◽  
...  

2011 ◽  
Vol 282-283 ◽  
pp. 82-85
Author(s):  
Xiao Peng Ji ◽  
Xing Feng Guan ◽  
Zhen Hong Wang

Li-ion batteries have been widely used. However, the safety concern is always serious due to its high energy density. In order to improve the safety of the batteries, it is necessary to use the protection integration circuit. In this article, the concept for realizing the safety protection of Li-ion batteries during charging and discharging is described briefly. A circuit design using Seiko BMS chip S-8209 is purposed. Based on this, a simulation was performed and verified using Pspice program, which provides a theoretical basis for the circuit design.


2018 ◽  
Vol 6 (7) ◽  
pp. 3134-3140 ◽  
Author(s):  
Ji Eon Kwon ◽  
Chang-Seok Hyun ◽  
Young Jun Ryu ◽  
Joungphil Lee ◽  
Dong Joo Min ◽  
...  

Triptycene bearing three benzoquinone moieties in a rigid 3-D tripod structure is capable of utilizing five-electron redox reactions that can provide a large capacity and high energy density in Li-ion cells.


Author(s):  
T. Richard Jow ◽  
Jan L. Allen ◽  
Oleg A. Borodin ◽  
Samuel A. Delp ◽  
Joshua L. Allen

Sign in / Sign up

Export Citation Format

Share Document