scholarly journals Orthogonal click reactions enable the synthesis of ECM-mimetic PEG hydrogels without multi-arm precursors

2018 ◽  
Vol 6 (30) ◽  
pp. 4929-4936 ◽  
Author(s):  
Faraz Jivan ◽  
Natalia Fabela ◽  
Zachary Davis ◽  
Daniel L. Alge

A two-step, click chemistry approach to create user-defined hydrogels consisting of poly(ethylene glycol) and bioactive peptides without the use of multi-arm precursors for tissue engineering.

2014 ◽  
Vol 8 (1) ◽  
pp. 95-101 ◽  
Author(s):  
Shotaro Yoshida ◽  
◽  
Koji Sato ◽  
Shoji Takeuchi

This paper describes a method for assembling cellladen microplates into three-dimensional (3D) microstructures by in situ gluing using photocurable hydrogels. We picked up cell-laden microplates with microtweezers, placed the plate perpendicular to one another on a microgroove device, and glued them by local photopolymerization of biocompatible Poly (Ethylene Glycol) (PEG) hydrogels. The advantage of this assembly method is its ability to construct 3D biological microstructures with targeted cells. We demonstrated the assembly of a 3D half-cube microstructure with genetically labeled cell-laden microplates. We believe our method is useful for engineering the positions of cells in 3D configurations for cell-cell interaction analysis and tissue engineering.


2007 ◽  
Vol 19 (4) ◽  
pp. 1479-1484 ◽  
Author(s):  
Dirk Grafahrend ◽  
Julia Lleixa Calvet ◽  
Jochen Salber ◽  
Paul D. Dalton ◽  
Martin Moeller ◽  
...  

2014 ◽  
Vol 5 (13) ◽  
pp. 4002-4008 ◽  
Author(s):  
Hong Du ◽  
Guangyu Zha ◽  
Lilong Gao ◽  
Huan Wang ◽  
Xiaodong Li ◽  
...  

Novel biodegradable antimicrobial hydrogels, which are promising for use as biomaterials, were prepared facilely via a thiol–ene “click” reaction under human physiological conditions using multifunctional poly(ethylene glycol) (PEG) derivatives as precursors.


Sign in / Sign up

Export Citation Format

Share Document