scholarly journals Three-Dimensional Microassembly of Cell-Laden Microplates by in situ Gluing with Photocurable Hydrogels

2014 ◽  
Vol 8 (1) ◽  
pp. 95-101 ◽  
Author(s):  
Shotaro Yoshida ◽  
◽  
Koji Sato ◽  
Shoji Takeuchi

This paper describes a method for assembling cellladen microplates into three-dimensional (3D) microstructures by in situ gluing using photocurable hydrogels. We picked up cell-laden microplates with microtweezers, placed the plate perpendicular to one another on a microgroove device, and glued them by local photopolymerization of biocompatible Poly (Ethylene Glycol) (PEG) hydrogels. The advantage of this assembly method is its ability to construct 3D biological microstructures with targeted cells. We demonstrated the assembly of a 3D half-cube microstructure with genetically labeled cell-laden microplates. We believe our method is useful for engineering the positions of cells in 3D configurations for cell-cell interaction analysis and tissue engineering.

2018 ◽  
Vol 6 (30) ◽  
pp. 4929-4936 ◽  
Author(s):  
Faraz Jivan ◽  
Natalia Fabela ◽  
Zachary Davis ◽  
Daniel L. Alge

A two-step, click chemistry approach to create user-defined hydrogels consisting of poly(ethylene glycol) and bioactive peptides without the use of multi-arm precursors for tissue engineering.


2014 ◽  
Vol 2 (2) ◽  
pp. 167-175 ◽  
Author(s):  
Vinh X. Truong ◽  
Matthew P. Ablett ◽  
Hamish T. J. Gilbert ◽  
James Bowen ◽  
Stephen M. Richardson ◽  
...  

Author(s):  
Audrey L. Earnshaw ◽  
Justine J. Roberts ◽  
Garret D. Nicodemus ◽  
Stephanie J. Bryant ◽  
Virginia L. Ferguson

Agarose and poly(ethylene-glycol) (PEG) are commonly used as scaffolds for cell and tissue engineering applications [1]. Agarose is a natural biomaterial that is thought to be inert [2] and permits growing cells and tissues in a three-dimensional suspension [3]. Gels synthesized from photoreactive poly(ethylene glycol) (PEG) macromonomers are well suited as cell carriers because they can be rapidly photopolymerized in vivo by a chain radical polymerization that is not toxic to cells, including chondrocytes. This paper explores the differences in mechanical behavior between agarose, a physically cross-linked hydrogel, and PEG, a chemically cross-linked hydrogel, to set the foundation for choosing hydrogel properties and chemistries for a desired tissue engineering application.


2016 ◽  
Vol 4 (10) ◽  
pp. 1493-1502 ◽  
Author(s):  
Zujian Feng ◽  
Junqiang Zhao ◽  
Yin Li ◽  
Shuxin Xu ◽  
Junhui Zhou ◽  
...  

Thermo-sensitive injectable hydrogels based on poly(ε-caprolactone)/poly(ethylene glycol) (PCL/PEG) block copolymers have attracted considerable attention for sustained drug release and tissue engineering applications.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 605
Author(s):  
Marie-Emérentienne Cagnon ◽  
Silvio Curia ◽  
Juliette Serindoux ◽  
Jean-Manuel Cros ◽  
Feifei Ng ◽  
...  

This article describes the utilization of (methoxy)poly(ethylene glycol)-b-poly(1,3-trimethylene carbonate) ((m)PEG–PTMC) diblock and triblock copolymers for the formulation of in situ forming depot long-acting injectables by solvent exchange. The results shown in this manuscript demonstrate that it is possible to achieve long-term drug deliveries from suspension formulations prepared with these copolymers, with release durations up to several months in vitro. The utilization of copolymers with different PEG and PTMC molecular weights affords to modulate the release profile and duration. A pharmacokinetic study in rats with meloxicam confirmed the feasibility of achieving at least 28 days of sustained delivery by using this technology while showing good local tolerability in the subcutaneous environment. The characterization of the depots at the end of the in vivo study suggests that the rapid phase exchange upon administration and the surface erosion of the resulting depots are driving the delivery kinetics from suspension formulations. Due to the widely accepted utilization of meloxicam as an analgesic drug for animal care, the results shown in this article are of special interest for the development of veterinary products aiming at a very long-term sustained delivery of this therapeutic molecule.


Sign in / Sign up

Export Citation Format

Share Document